

OpenFlow Security

Junichi Murakami Executive Officer, Director of Advanced Development Division

> Fourteenforty Research Institute, Inc. http://www.fourteenforty.jp

> > ver2.00.02

<u>Agenda</u>

- 1. Introduction
- 2. OpenFlow Overview
 - Software Defined Network(SDN) and OpenFlow
 - Background and circumstances
 - Technical basics
 - Controllers and Switches
 - Example of network design and traffic
- 3. Threat of OpenFlow
 - Threat analysis
 - Flow entry / Network capability / Switch / Controller
 - Conclusions
 - Further research
- 4. References

FFRI

Introduction

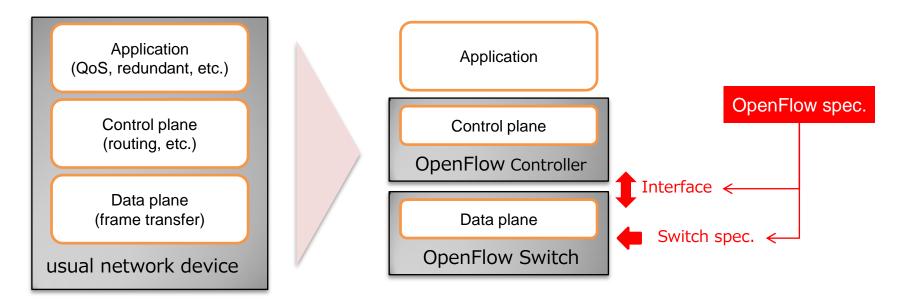
- This slide describes an overview of OpenFlow technology and its threat analysis under the current specification
- This research focuses on the specification of OpenFlow 1.0
- Threats described in this slide does not always mean the feasibility of attacks on the threats is proven

Software Defined Network(SDN) and OpenFlow

- SDN
 - Usual networks are fixed system, which are defined by each network device's deployment, connections and configurations
 - Virtualizations for servers and storages are in progress in a data center in recent years.
 - A network is not so flexible yet, so it needs to be re-designed and reconfigured every time (operation cost is highly increasing)
 - SDN is general concept to define network as software for making it more flexible in terms of its design, control and management
- OpenFlow
 - A kind of technology specifications to realize the SDN

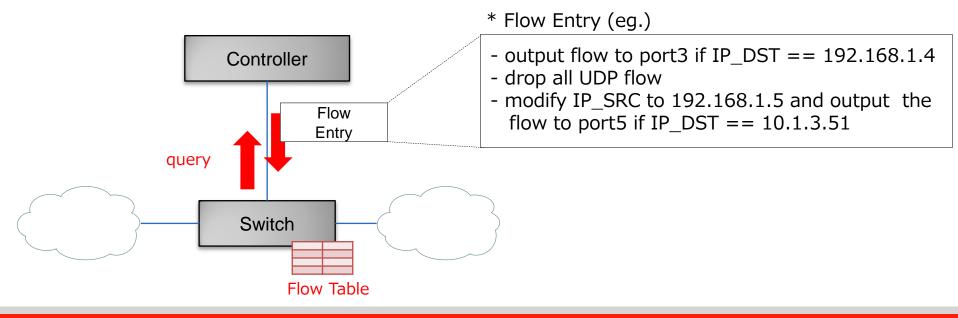
Background and circumstances

- Open Networking Foundation(ONF) draws up the specification
 - <u>https://www.opennetworking.org/</u>
- Board member of ONF is shown as below(4/15/2013)
 - Deutsche Telekom, Facebook, Goldman Sachs, Google, Microsoft, NTT Communications, Verizon, Yahoo!
- Currently most implementations are based on version 1.0


Date	Occurrence
12/31/2009	Version 1.0 published(mainly worked by Stanford University)
2/28/2011	Version 1.1 published
3/21/2011	Open Networking Foundation Founded
12/5/2011	Version 1.2 published
5/25/2012	Version 1.3 published
9/6/2012	Version 1.3.1 published

Technical basis (1/5)

- Basic concept
 - Separate control plane from network devices
 - Build up network with OpenFlow Controllers and OpenFlow Switches
 - The specification mainly defines switch spec. and communication interface between OpenFlow Controllers and OpenFlow Switches


Technical Basis (2/5)

- Flow
 - A unit of traffic handled by OpenFlow
- Flow Entry: management structure of Flow consists of 3 elements below
 - Header Fields : conditions to determine a target flow
 - Instructions: a set of actions which describes how the matched flow being processed
 - Counter : statistics information of the matched flow

Header Fields		Actions (partial)	
Ingress port	IP src	Forward	output the flow to specified port
Ether src	IP dst	DROP	discard the flow
Ether dst	IP proto	Modify-Field	modify specified fields of the
Ether type	IP ToS bits		flow
VLAN id	TCP/UDP src port		
VLAN priority	TCP/UDP dst port		

Technical Basis (3/5)

- Controller
 - Write a flow entry to a switch
 - Respond to a switch's query (shown as below)
- Switch
 - Keep flow entries on a flow table
 - Process each flow based on a flow table
 - Query to controller if appropriate entry does not exist

Technical Basis (4/5)

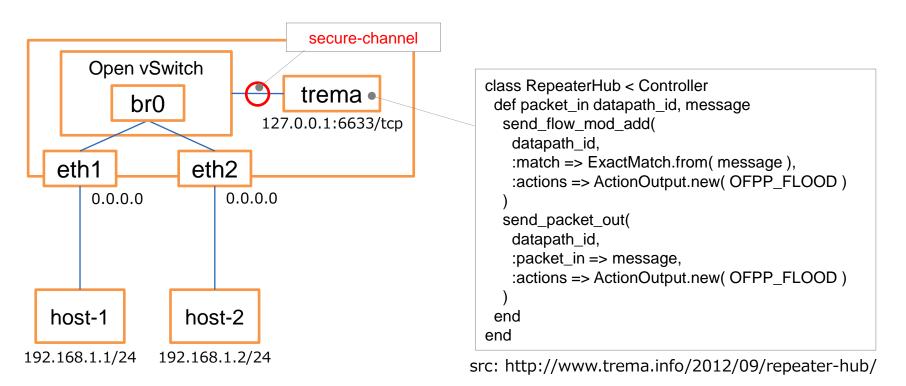
- Can control switch behavior based on flow entry
 - repeater, switch, router, load balancer and so on
- Doesn't need to change physical connections and each device configurations
- Retrieve counters from each switch's flow table
 - Can manipulate routing appropriately according to flow type and load
- Each flow entry on a flow table has a timeout
 - hard timeout
 - idle timeout

Technical Basis (5/5)

- Secure-Channel : communication interface between switches and controllers
 - following messages are exchanged over TCP or TLS connections
 - a. Controller to Switch
 - Features : to request the capability of a switch
 - Configuration : to set and query configuration parameter in a switch
 - Modify-State: to add or delete entry in a flow table and modify port configuration
 - Read-State : to collect statistics from a switch
 - b. Switch to Controller (asynchronous)
 - Packet-in : to notify an incoming packet which is not matched to any flow entry
 - Flow-Removed : to notify a flow has expired and is deleted from a table
 - Port-Status : to notify switch's port configuration states has changed (eg. linkdown)
 - c. bidirectional (asynchronous)
 - HELLO: messages exchanged when establishing a connection
 - ECHO (Request/Reply) : ping/pong over the secure-channel

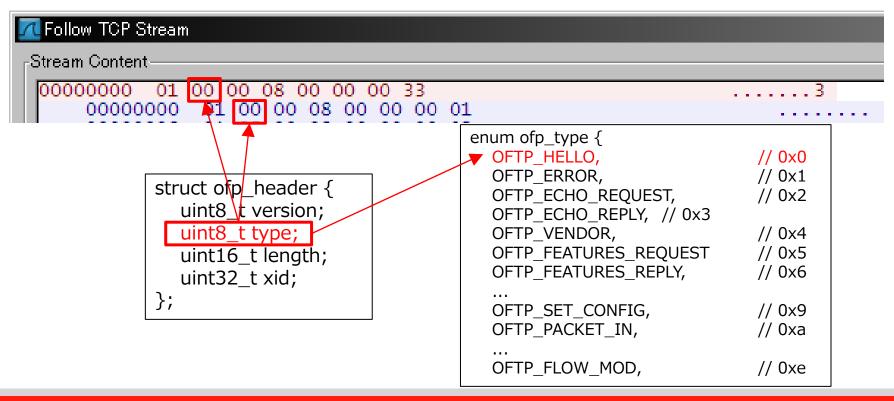
FFRI

Controllers and Switches


- Both software and hardware implantations are available
- Hardware based switch is a bit expensive yet

	Software	Hardware
Switch	 Open vSwitch(OSS) Indigo(OSS) LINC(OSS) UNIVERGE PF1000(NEC) 	 UNIVERGE PF5220/PF5240/ PF5248/PF5820 (NEC) RackSwitch G8264/G8264T(IBM) Pronto 3290/3780(Pica8) AS4600-54T/L3(Riava) HP2920-24G(HP)
Controller	 NOX(OSS) POX(OSS) Trema(OSS) Floodlight(OSS) Virtual Network Controller Version 2.0 (NTT data) Ryu(OSS) 	UNIVERGE PF6800(NEC)

Example of network design and traffic(1/4)

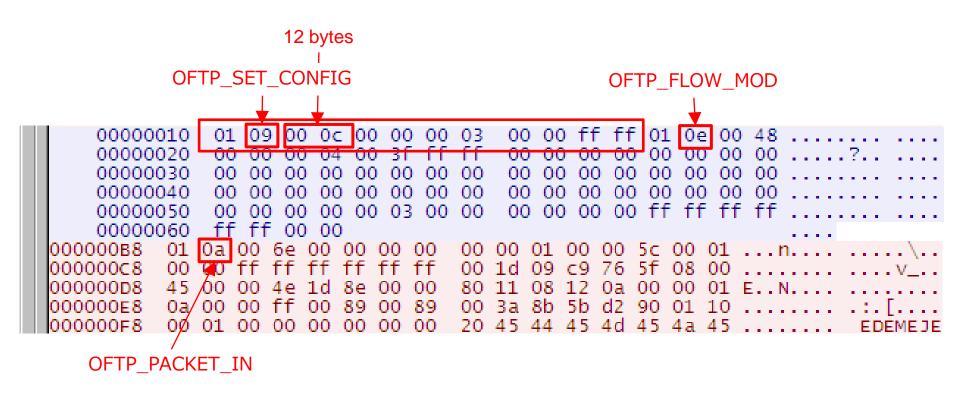

- Install Open vSwitch and Trema on Linux box
- Create a bridge device as br0 and activate it
- Run Trema on localhost:6633/tcp, and specify the controller's address in the switch parameter
- Run the controller code below on Trema which makes the switch act like an repeater

Example of network design and traffic(2/4)

- Both controller and switch run on same Linux box
- TCP based Secure-Channel (not TLS)
- Red background on screen is the switch's traffic
- Exchanging HELLO messages between the switch and the controller

Example of network design and traffic (3/4)

■ Features request and reply


OFTP_FEATURES_REPLY OFTP_FEATURES_REQUEST 01 00 00 08 00 00 00 0000008 01 05 50 08 00 00 00 01 06 00 b0 00 00 00 02 29 b7 2f cf 0cff ff 00 00 00 00 Of - C7 29 b7 2f d9 00 00 00 0c. eth2 00 00 00 00 00 00 00 00 00 c0 00 00 00 00 00 00 00 -e0 ff fe Oc 29 b7 2f 00 00 00 cf brü 00 00 00 00 00 00 00 00 00 29 b7 2f cf 0cet h1 8A000000 00 00 c0e0. 00^{-1}

replying port configurations

Example of network design and traffic (4/4)

Initial configuration and writing flow entry from controller / PACKET_IN message from switch

Threat analysis

[premises]

- Assets: a)Flow entry in switch, b)Network capability offered by OpenFlow
- Information system: c)Switch, d)Controller
- Analyze assets' threat against CIA and the others are against CIAAAR
 - CIAAAR: ISO/IEC TR 13335(GMITS)

	Assets		Information system	
	Flow entry	Network capability	Switch	Controller
Confidentiality				
Integrity		region for analysis		
Availability		- J		
Authenticity				
Accountability				
Reliability				

Flow entry

	Assumed threat	Countermeasure and comment
С	Information leaking on the network	Using TLS for Secure-Channel
	Information leaking from switches	Hardening switches
	Information leaking from controllers	Hardening controllers
I	Tampering on the network	Using TLS for Secure-Channel
	Tampering in switches	Hardening switches
	Tampering from controllers	Hardening controllers
A	Flooding a table using spoofed packet	Applying flow entry to prohibit address spoofing (References 2.c)
	Flushing a flow table in switches	Hardening switches

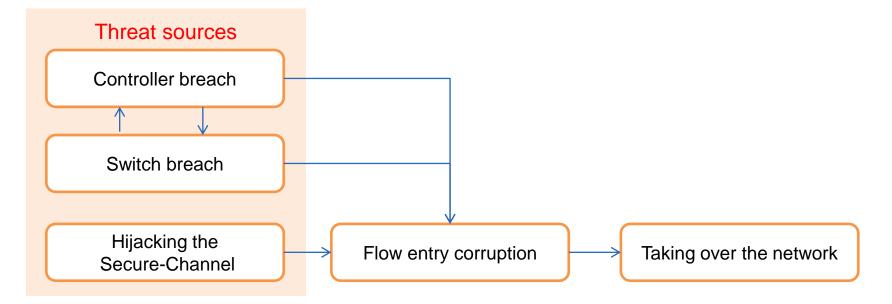
Network capability

	Assumed threat	Countermeasure and comment
С	Information leaking by corrupted flow entry	Hardening switches and controllers
1	Traffic tampering by corrupted flow entry	Hardening switches and controllers
	Integrity loss by secure channel disconnection	making secure-channel redundant
А	Denial of service by corrupted flow entry	Hardening switches and controllers
	Denial of service by switches and controllers failure	Hardening switches and controllers
	Network failure by secure channel disconnection	making secure-channel redundant

FFRI

Switch

	Assumed threat	Countermeasure and comment
Со	Hacking a system (eg. exploiting, password cracking)	Hardening switches
In	Hacking a system (eg. exploiting, password cracking)	Hardening switches
Av	Hacking a system (eg. exploiting, password cracking)	Hardening switches
	DoS attack from controllers	Hardening controllers (premise: controllers compromise)
	Dos attack from others	Applying the flow entry considered such attack
	Hardware/Software failure	Making a system redundant
Au	Hacking a system (eg. password cracking, identity theft)	Hardening switches
	Redirection to fake controllers (eg. ARP Poisoning)	Authenticating controllers using TLS based on certifications
Ac	Tampering logs by hacking	Hardening switches
Re	Hacking a system (eg. exploiting, password cracking)	Hardening switches


Controller

	Assumed threat	Countermeasure and comment
Со	Hacking a system (eg. exploiting, password cracking)	Hardening controllers
In	Hacking a system (eg. exploiting, password cracking)	Hardening controllers
Av	Hacking a system (eg. exploiting, password cracking)	Hardening controllers
	DoS attack from switches	Hardening switches (premise: switches compromise)
	DoS attack from others	Applying the flow entry considered such attack
	Hardware/Software failure	Making a system redundant
Au	Hacking a system (eg. password cracking, identity theft)	Hardening controllers
	Redirection to fake switches (eg. ARP Poisoning)	Authenticating switches using TLS based on certifications
Ac	Tampering logs by system hacking	Hardening controllers
Re	Hacking a system (eg. exploiting, password cracking)	Hardening controllers

Conclusions

- Hardening switches and controllers and TLS for Secure-Channel are required (depends on where both devices be deployed)
- Both switches and controllers have software component in the system
 - usual countermeasures are important technically and operationally
- Especially, should be careful about controllers as it might be an SPOF

Further research

- Any way to make a DoS situation to a controller by sending special crafted packet like smurf(#1) attack and DNS Amp(#2) attack?
 - Packet-in flood
 - Flow-Removed flood
 - Port-Status flood
- remote flow entry detection by various probing packets
- Auditing each individual device's design and implementation
- Security problem from actual environment and operations
 - Logic error in flow entry

#1 http://www.ipa.go.jp/security/ciadr/crword.html#S

#2 http://www.ipa.go.jp/security/vuln/documents/2008/200812_DNS.html

References

- 1. Books (Japanese)
 - a. クラウド時代のネットワーク技術 OpenFlow実践入門 (ISBN-10: 4774154652)
- 2. Online resources
 - a. Openflow Networking Foundation <u>https://www.opennetworking.org/</u>
 - b. OpenFlow Switch Specifications version 1.0.0 <u>http://www.openflow.org/documents/openflow-spec-v1.0.0.pdf</u>
 - c. SDNのセキュリティ / Inter-Domain Routing Security 23 (Japanese) http://irs.ietf.to/wiki.cgi?page=IRS23

