
CODEBLUE 2014.12.18-19

Takahiro Matsuki (FFRI)
Dennis Kengo Oka (ETAS)

 Introduction

 About ECU Software

 Overview of TriCore

 Investigation and Confirmation of Attack Methods

 Demo

 Summary and Future Plans

2

 Previous research has shown that vehicle ECUs can be targeted by

attackers through injection of messages on the CAN bus – what
about ECU software?

 ECU microcontroller architecture is different from traditional PC
architecture; therefore, traditional software attacks do not work?

 ECU microcontrollers have specific security countermeasures
preventing software attacks?

 If software is vulnerable, by adjusting traditional software attacks to
ECU microcontroller architecture, it is possible to execute attacks?

3

 ECU Hardware and Software Configuration

◦ ECU functions and microcontrollers, bus, I/O Interface

◦ What microcontrollers are used

 ECU Microcontroller Architecture

◦ Program Execution Method

◦ Instruction Execution Flow, Register, Memory Layout

 ECU Software Execution Environment and Development
Environment

◦ Library, Compiler

◦ Content of the code generated by development tools

◦ Reverse engineering methods of the program files

4

About ECU Software

5

 Basically every modern production car has a multitude of electronic
control units to provide safety- as well as comfort functions.

 Average vehicle has up to 70 ECUs

 >20,000,000 lines of source code

 Electronic components are estimated to cost about 50% of the
automotive production costs by 2015

 50% infotainment, 30% powertrain and transmission, 10% chassis
control, 10% body and comfort

6

 Engine control unit
◦ Fuel amount and mixture, air and fuel delivery timing, valve timing, ignition timing,

emission control, etc…

 Transmission control unit

◦ Gear change, shift lock, shift solenoids, pressure control solenoids, etc…

 Body control unit

◦ Central locking, immobilizer system, power windows, climate control, etc…

 ABS/ESP control unit

◦ Regulating brake pressure, traction control, cornering brake control, etc…

7

 Typical feedback control system

 1. Monitor input. e.g. timer, sensors, CAN

 2. Calculate or lookup appropriate response

 3. Generate corresponding outputs

8

 Fully custom, proprietary software

 Unix-based proprietary software

 Standardized software. e.g. AUTOSAR

9

Overview of TriCore

10

 Microcontroller for Vehicle ECUs

 Manufactured and sold by Infineon

◦ Spin off of Semiconductor Unit from the German manufacturer

Siemens AG

 ECUs With TriCore

◦ Bosch EDC17 & MED17, Siemens

 Car Manufacturers Using ECUs with TriCore

◦ Audi, BMW, Citroen, Ford, Honda, Hyundai,

Mercedes-Benz, Nissan, Opel, Peugeot, Porsche, Renault, Seat,

Toyota, Volkswagen, Volvo

11

 Command Set
◦ 32 bit RISC Architecture

 Unique Register Configuration
◦ Completely separated address and data registers
◦ A0~A16, D0~D16

 Model Number and Specifications of the
Microcontroller Used in this Research
◦ TC1797 (AUDO Future)

 TriCore Architecture 1.3.1

 Clock 180 MHz

12

 Research of Open Information and
Specification Documents on the Web
◦ Official User’s Manual

 Most reliable information source

 Focused on memory related charts/diagrams

 Keyword search for security related terms

 security, protection, password

◦ TriCore Architecture Overview

 Summarized material of the User’s Manual

 13

 Searched Research Papers
◦ TriCore Emulator

 Porting TriCore to QEMU
◦ Porting Linux Kernel to TriCore

 Searched for Information/Tools for Software Developers of
ECU Software
◦ Development Environment TASKING VX-toolset for TriCore

(Evaluation Edition)
 Compiler, IDE with simulator

◦ Evaluation Board Infineon Starter Kit TC1797
◦ FlexECU development platform

 Reverse Engineering of the Binary
◦ Possible to Disassemble using IDA Pro

 File Format is ELF for Siemens TriCore

14

Investigation and Confirmation
of Attack Methods

15

 Non-Memory Corruption

Vulnerabilities

◦ Access Control Issues

◦ Encryption Strength Issues

◦ Inappropriate Authentication

◦ Conflictions

◦ Certificate / Password

Management Issues

◦ etc.

Since it was difficult to obtain and analyze actual ECU
Software, we hypothesized about the possibility of memory

corruption vulnerabilities.

 Memory Corruption

Vulnerabilities

◦ Buffer Overflow

◦ Integer Overflow

◦ Use After Free

◦ Null Pointer Dereferences

◦ Format String Bugs

◦ etc.

16

 Buffer Overflow

◦ Stack Overflow

◦ Heap Overflow

 Integer Overflow

◦ Hypothesized that integer overflows can cause of heap overflows

 Format String Bug

◦ Possible to overwrite an arbitrary value in an arbitrary address, hypothesized that

attacks are possible

 Use After Free

◦ Implied attacks are possible because C++ code is executable with TriCore

 Null Pointer Dereference

◦ Trap occurs by access to memory address zero, hypothesized attacks are possible

17

 Stack Overflows

◦ For TriCore, unlike x86 and others, the return address is saved

in the address register (A11) instead of the stack, therefore

overwriting the return address using a stack overflow is not

possible.

 Heap Overflows

◦ Will examine TriCore’s heap management in the near future

18

 Possibilities of a Stack Overflow Attack
◦ If the buffer and function pointer exist on the stack

in the following code flow, it is possible to change
the execution flow of the program by a stack
overflow

main() check(f_ptr)

receive()

compare()

success()

failure()

19

f_ptr = &compare()

failure() { ...

}

success() {

}

compare() { ...

}

receive() {

// receive input value

input = …

char buffer[10];

strcpy(buffer, input);

}

check(f_ptr) {
// call receive() to receive incoming values
 receive();
// call compare() using a function pointer
 f_ptr();
}

main () {

function_ptr = &compare;
…
check(function_ptr);

}

 Example Code

20

 Memory Layout

Address

0x8000 010C

0x8000 013C

0x8000 0170

0x8000 017C

0x8000 0188

…

0xD000 8FC8

0xD000 8FE0

Variable

check()

receive()

compare()

success()

failure()

…

buffer[]

function_ptr

21

main() check(f_ptr)

receive()

compare()

success()

Failure()

check() calls f_ptr() which now points to success()
(0x8000 017C) instead of compare() (0x8000 0170)

22

 Issues
◦ If compiler optimization is “on”, the function pointer

will be stored in the address register

◦ Unclear whether there are similar code patterns in
actual ECU software

23

Considering Attacks
Possibilities Using TriCore’s

Control Mechanism

24

 Preconditions

◦ It is possible to overwrite data by using memory corruption

vulnerabilities

◦ Under the above condition, considered ways to execute

arbitrary code

 TriCore’s Control Mechanism

◦ Context Management Mechanism

◦ Interrupt/Trap Mechanism

25

Attack Methods Using the
Context Management

Mechanism

26

 About Context

◦ The register value is CSA (Context Save Area)

Saves and restores in TriCore’s unique memory space

 Types of Context

◦ 2 Types: Upper context and Lower context

◦ Upper context

 call command, interrupt, automatically saves when trapped

◦ Lower context

 Explicitly saved by using a dedicated command, used for
passing parameters

27

Reference: Tricore Architeture Overview

http://www.infineon-ecosystem.org/download/schedule.php?act=detail&item=44

28

Reference: Tricore Architeture Overview

http://www.infineon-ecosystem.org/download/schedule.php?act=detail&item=44

29

 CSA is Managed by Link Lists
◦ Used CSA List (PCX) , Unused CSA List (FCX)

◦ Pointer to the first element of each list is PCX, stored
in FCX register

 However, needs to be converted because it is not a raw
address

 Reference: Tricore Architeture Overview

http://www.infineon-ecosystem.org/download/schedule.php?act=detail&item=44

30

 Method 1：CSA Overwriting
◦ By overwriting any return address saved in

the CSA using a memory corruption
vulnerability, it is possible to run code of an
arbitrary address

 Method 2：CSA Injection
◦ By overwriting a Link word of the CSA using a

memory corruption vulnerability, it is possible
to restore crafted Upper context (including
return address) and run arbitrary code.

31

 Code on the right is the result of execution
without augments
func1
func2
func3

 Rewrite the return address (*ret) within
func2 saved in the CSA to func3 address
(0x80000360)

 When returned to func1, the A11 register
value restores to func3 (0x80000360)

 Jump to func3 on func1 return

32

 CSA overwrite using an evaluation board was
possible in the same way as the simulator
◦ There are memory protections to prevent CSA

overwrites by default.

◦ May be possible to exploit on actual ECU Software

33

Attack Methods Using the
Interrupt and Trap Mechanisms

34

 When an interruption occurs, the
Interrupt Vector Table (IVT) is
referred, and the Interrupt Service
Routine (ISR) corresponding to the
Pending Interrupt Priority Number
(PIPN) is executed

 IVT Start Address

◦ BIV Register (Begin Interrupt
Vector)

 Addresses of entry point of each
ISR
◦ BIV | (ICR.PIPN << 5)

 ICR (Interrupt Control
Register)

Reference: Tricore Architeture Overview

http://www.infineon-ecosystem.org/download/schedule.php?act=detail&item=44

ISR is user-defined PIPN 0~255

35

 A mechanism used when an
exception occurs. It is trapped
and runs a specific process
◦ Causes of Traps

 Command exceptions,
unauthorized memory
access, etc…

 When a trap occurs, the Trap
Vector Table is referred, and
the Trap Service Routine
corresponding to the Trap
Class Number (TCN) is
executed.

Reference: Tricore Architeture Overview

http://www.infineon-ecosystem.org/download/schedule.php?act=detail&item=44

36

 Method 1: Overwrite the IVT
◦ By overwriting the jump code to the ISR in the IVT, when a

certain interrupt occurs, run arbitrary code

 Method 2: Overwrite the TVT
◦ By overwriting the TSR code in the TVT , when a

certain trap occurs, run arbitrary code

37

 BIV value 0xa00f0000

 Define a ISR as __interrupt(3)
hoge_isr() , a jump code to hoge_isr()
is allocated to
0xa00f0060 (0xa00f00+ 32*3) ,
making it possible to overwrite

 Overwrite possible on simulator
◦ However, because whether an interrupt

could be triggered intentionally is
unknown, left untested

◦ In the real project, the 0xA segment is
mapped on the Flash memory, and may
not be overwritable.

 The TVT is similarly overwritten

38

 The BIV and BTV values of the evaluation board are
different from the simulator
◦ BIT @ 0xF7E1FE20, BTV @ 0xF7E1FE24

 Protected

 Overwriting from the debugger possible

 Tried to overwrite the code by disabling the
protection and a trap2 occurred

 Probably cannot exploit on actual ECU software

39

Verification on an Evaluation
Board

40

 HP EliteBook 2530p, Win7, Centrino2
◦ HIGHTEC Free TriCore Entry Tool Chain
◦ BUSMASTER

 Infineon TriBoard TC1797 V5.0

 ETAS ES592.1

41

ES592.1 TriBoard Notebook

Ethernet

CAN USB

42

43

Demo

44

Summary and Future Plans

45

 Considered attack methods on ECU software in which memory corruption

vulnerabilities exist

 If memory corruption vulnerabilities exist, it may be possible to execute

arbitrary code

◦ If a buffer overflow exists, it is possible to execute arbitrary code under certain

conditions

◦ By altering the CSA, it is possible to execute arbitrary code

◦ By altering the interrupt/trap vector tables, it is impossible to execute arbitrary code

 Created vulnerable ECU software and conducted an attack demo

 This research is a result of a study of logical attack methods and a demo

conducted on a vulnerable software sample. This study does NOT

indicate anything about existing threats on actual ECU software.

46

 Additional Research
◦ Study other vulnerabilities and architecture specific issues

 Demonstrate the Threats
◦ Reverse engineering of ECU software and investigate if memory

corruption vulnerabilities exist

◦ Attack actual vulnerabilities and verify if the ECUs stop or if
anything abnormal occurs

 Consider Countermeasures

◦ Consider countermeasures of ECU software vulnerabilities

◦ Consider measures to efficiently discover vulnerabilities resulting
from programming errors

47

Thank you

48

