
FFRI,Inc.

1

Security in the IoT World:

Analyzing the Security of Mobile Apps for Automobiles

** Supplement **

Naohide Waguri

FFRI, Inc.

October 21, 2016

CODE BLUE 2016

FFRI,Inc.

Evaluating and Scoring

the Risk of Vulnerabilities

2

FFRI,Inc.

CVSS c3 base score of the found vulnerabilities

• What is CVSS?

– CVSS is the abbreviation for the “Common Vulnerability

Scoring System”.

– It is one of the methods that is a generic and open to

evaluating a risk of vulnerability.

– v3 is focused on characteristics of vulnerable component

compared to V2 for considering a scope of influence by the
vulnerability.

– To know details of CVSS, see also references page.

3

FFRI,Inc.

Vulnerability #1:

HTTP communication that contains user information

Metrics Assigned

Attack Vector (AV) Network

Attack Complexity (AC) Low

Privileges Required (PR) None

User Interaction (UI) None

Scope (S) Unchanged

Confidentiality (C) Low

Integrity (I) Low

Availability (A) Low

4

Base Score

7.3 (High)

Note:
- An attacker is possible to obtain some user information and modify

the communication data, but they would not be a serious impact
to the component directly.

FFRI,Inc.

Vulnerability #2:

Server certificate validation flaw

Metrics Assigned

Attack Vector (AV) Adjacent

Attack Complexity (AC) High

Privileges Required (PR) None

User Interaction (UI) Required

Scope (S) Unchanged

Confidentiality (C) High

Integrity (I) High

Availability (A) Low

5

Base Score

6.4 (Medium)

Note:
- The app has a potential to be MITM attacked because it does not

validate an SSL server certificate.
- There is a potential that an attacker intercepts a communication

data that should be protected (e.g., authenticates credential).

Why did we assign “Required” to User
Interaction?
- The app does not communicate to a
server on HTTPS until a user taps the
“login” button.
- Auto login will be performed if a user
configures own.

FFRI,Inc.

The First Step for

Reverse Engineering

an Android App

6

FFRI,Inc.

How to reverse engineering an Android app

• At the CODE BLUE 2016, I did not talk detail about how to reverse

engineering the apps that were detected critical vulnerabilities
by AndroBugs.

• In this paper, I introduce some tools used for reverse engineering

an Android app.

7

FFRI,Inc.

A Flow of reverse engineering an Android app

• There are 3 steps to reverse engineering an Android app.

8

Getting from official marketplace

or extract APKs using adb

Getting from unofficial marketplace

Using the apktool to unpack and
decode to manifest and smali files

Unzip to get dex file to decompile

#3.Decompile to java from DEX

#1.Getting a target APK

#2.Unpack an APK file

Have fun 

Actually, there are some step to decompile to java
(DEX → JAR → class → java)

FFRI,Inc.

#1. Getting a target APK file

• There are 2 ways to get an APK file.

– Extract from a device using adb (Android Debug Bridge).

– Download from an unofficial marketplace and so on.

• To use adb, you need to install Android SDK in advance.

• If you use adb in Windows OS, I recommend to install a grep-

like command because it helps to search a target APK using

adb.

9

FFRI,Inc.

#1. Getting a target APK file (cont.)

• Step1. Check the installed packages in a device.

– “pm list packages” is able to enumerate packages that are in a

target device.

– “-f” option is output packages associated file.

• Step2. Download a target package (APK) from a device.

– “pull” command is able to download (pull) a package to your PC.

10

jcnuts@jcnuts:~$ adb shell pm list packages -f | grep google
package:/data/app/com.google.android.apps.books-1.apk=com.google.android.apps.books
package:/data/app/com.google.android.apps.docs-1.apk=com.google.android.apps.docs

jcnuts@jcnuts:~/re_apks$ adb pull /data/app/com.google.android.apps.maps-2.apk
953 KB/s (28180726 bytes in 28.863s)
jcnuts@jcnuts:~/re_apks$ ls
com.google.android.apps.maps-2.apk
jcnuts@jcnuts:~/re_apks$

FFRI,Inc.

#2. Unpack an APK file

• APK can unzip the same as ZIP.

– However, most of the files that you are obtained by unzipping are
a binary format that is hard to analyze

• The apktool provide some features you to analyze more easily.

– Decoding a resources and manifest file.

– Baksmaling a dex file.

11

FFRI,Inc.

#2. Unpack an APK file (cont.)

• apktool is available to download from the following link:
https://ibotpeaches.github.io/Apktool/

• You can skip this process if you do not need resource and

manifest files for reverse engineering.

12

jcnuts@jcnuts:~/re_apks$ apktool d sample.apk
I: Using Apktool 2.0.0-RC2 on sample.apk
I: Loading resource table...
I: Loading resource table...
I: Decoding AndroidManifest.xml with resources...
I: Loading resource table from file: /home/jcnuts/apktool/framework/1.apk
I: Regular manifest package...
I: Decoding file-resources...
I: Decoding values */* XMLs...
I: Baksmaling classes.dex...
Cleaning up unclosed ZipFile for archive /home/jcnuts/apktool/framework/1.apk
I: Copying assets and libs...
I: Copying unknown files...
I: Copying original files...
jcnuts@jcnuts:~/re_apks$

https://ibotpeaches.github.io/Apktool/

FFRI,Inc.

#3. Decompile to java from DEX

• There are some steps to get to java source code.

• Step1. Get a DEX from APK

– You can find a DEX file in the folder that has been created when

unzipped an APK.

13

jcnuts@jcnuts:~/re_apks/sample_unzipped$ ls -l
total 5924
-rw-rw-r-- 1 jcnuts jcnuts 15404 Aug 18 15:55 AndroidManifest.xml
drwxrwxr-x 8 jcnuts jcnuts 4096 Oct 27 11:43 assemblies
drwxrwxr-x 4 jcnuts jcnuts 4096 Oct 27 11:43 assets
-rw-rw-r-- 1 jcnuts jcnuts 4689744 Aug 18 15:56 classes.dex
-rw-rw-r-- 1 jcnuts jcnuts 54 Aug 18 15:56 environment
drwxrwxr-x 5 jcnuts jcnuts 4096 Oct 27 11:43 lib
drwxrwxr-x 2 jcnuts jcnuts 4096 Oct 27 11:43 META-INF
-rw-rw-r-- 1 jcnuts jcnuts 157 Aug 18 15:56 NOTICE
drwxrwxr-x 3 jcnuts jcnuts 4096 Oct 27 11:43 org
drwxrwxr-x 22 jcnuts jcnuts 4096 Oct 27 11:43 res
-rw-rw-r-- 1 jcnuts jcnuts 450624 Aug 18 15:55 resources.arsc
jcnuts@jcnuts:~/re_apks/sample_unzipped$

FFRI,Inc.

#3. Decompile to java from DEX (cont.)

• Step2. Convert to JAR from DEX

– Use a dex2jar to convert to JAR from DEX.

– dex2jar is available to download the following link:

https://github.com/pxb1988/dex2jar

14

jcnuts@jcnuts:~/re_apks/sample_unzipped$ ls -l
total 10448
-rw-rw-r-- 1 jcnuts jcnuts 15404 Aug 18 15:55 AndroidManifest.xml
drwxrwxr-x 8 jcnuts jcnuts 4096 Oct 27 11:43 assemblies
drwxrwxr-x 4 jcnuts jcnuts 4096 Oct 27 11:43 assets
-rw-rw-r-- 1 jcnuts jcnuts 4689744 Aug 18 15:56 classes.dex
-rw-rw-r-- 1 jcnuts jcnuts 4630701 Oct 27 11:49 classes-dex2jar.jar
-rw-rw-r-- 1 jcnuts jcnuts 54 Aug 18 15:56 environment
drwxrwxr-x 5 jcnuts jcnuts 4096 Oct 27 11:43 lib
drwxrwxr-x 2 jcnuts jcnuts 4096 Oct 27 11:43 META-INF
-rw-rw-r-- 1 jcnuts jcnuts 157 Aug 18 15:56 NOTICE
drwxrwxr-x 3 jcnuts jcnuts 4096 Oct 27 11:43 org
drwxrwxr-x 22 jcnuts jcnuts 4096 Oct 27 11:43 res
-rw-rw-r-- 1 jcnuts jcnuts 450624 Aug 18 15:55 resources.arsc
jcnuts@jcnuts:~/re_apks/sample_unzipped$

https://github.com/pxb1988/dex2jar

FFRI,Inc.

#3. Decompile to java from DEX (cont.)

• Step3. Get class files from JAR

– Unzip a JAR (JAR can unzip the same as ZIP) to get class files.

• Step4. Decompile to java from class files.

– Use a Java Decompiler (JD-GUI) to decompile to java from

class files.

– Java Decompiler is available to download from the following link:

http://jd.benow.ca/

15

http://jd.benow.ca/

FFRI,Inc.

#4. What to do next?

• In this step, you ought to have already got java, smali, decoded

manifest file.

– Therefore, the next step you should be finding analysis entry point.

• How do I find an analysis entry point?

– There are various ways to find it.

– Deeper analysis often may be dependent on the intuition and

experience (more knowledges of vulnerability and how to exploit

them).

• The following examples do not depend on the intuition and
experience so much

– Use vulnerability scanners like AndroBugs, they would help to find

an entry point for analysis.

– To understand common vulnerabilities, read “Android Application

Secure Design/Secure Coding Guidebook”.
16

FFRI,Inc.

Introduction of other tools and distributions

• Androguard (https://github.com/androguard/androguard)

– Androguard is analysis tool for Android apps that is written in full

python.

– AndroBugs that I introduced at CODE BLUE also uses Androguard.

– Androguard might help to an automation of analysis to an

Android app.

• Santoku Linux (https://santoku-linux.com/)

– Santoku Linux is one of Linux distribution for mobile forensics,

analysis and security testing.

– It was presented at RSA Conference 2014

– Most of the famous tools that help you to forensics, analysis and

security testing to a mobile device and an app are pre-installed in

Santoku Linux.

17

https://github.com/androguard/androguard
https://santoku-linux.com/

FFRI,Inc.

Conclusions

• The risk score of vulnerabilities that I found was high.

– However, the results are only the base score.

– In generally, risk score will shift to low score finally by consideration

of the temporal score and the environmental score.

• Reverse engineering of an Android app is not so hard.

– There is a lot of information on the Internet.

– There is a lot of helpful tools for analysis.

– But deeper analysis may need the intuition and experience.

• The analysis automation also would be possible.

– Most of the tools provide command line execution.

– For example, Androguard is utilized in various analysis tools.

(e.g., Cuckoo, Viper, AndroBugs etc,…)

18

FFRI,Inc.

References

• 共通脆弱性評価システム CVSS v3概説

– https://www.ipa.go.jp/security/vuln/CVSSv3.html

• Common Vulnerability Scoring System, V3 Development Update

– https://www.first.org/cvss

• Dalvik bytecode

– https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html

• Cuckoo Sandbox

– https://cuckoosandbox.org/

• Viper

– http://www.viper.li/

• AndroBugs

– https://github.com/AndroBugs/AndroBugs_Framework

• If you want to know how to use Androguard, try seeing the following link:

• Part 1 – Reverse engineering using Androguard

– http://www.technotalkative.com/part-1-reverse-engineering-using-androguard/

19

https://www.ipa.go.jp/security/vuln/CVSSv3.html
https://www.first.org/cvss
https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html
https://cuckoosandbox.org/
http://www.viper.li/
https://github.com/AndroBugs/AndroBugs_Framework
http://www.technotalkative.com/part-1-reverse-engineering-using-androguard/

