PacSec 2011 Tokyo
How Security Broken?

Android Internals and Malware Infection Possibilities

Fourteenforty Research Institute, Inc.
http://www.fourteenforty.jp

FFR_
Background: Android and Threats <

* Increasing Share + Increasing Malware
— 3x malware increases in 20101
— 2010/08 : SMS malware identified (FakePlayer.A)
— 2011/03 : “Undeletable” malware found (DroidDream)
e Vulnerabilities and Exploits
— 2003- : Implementation to prevent exploits (DEP, ASLR...)
— Mobile devices also can be exploited
e 2007- : JailoreakMe (payload for iOS)
e 2011/03 : DroidDream (utilizing two rooting exploits)
e Countermeasure : Anti-virus Software for Android
— Android should be protected like PC

(1) http://www.adaptivemobile.com/

FFR
Agenda o

e Security in Low Layer
— Protection in Kernel level
e Android Internals
— Packages / Permissions
— Intent / Activity / Broadcast
e Threats and Countermeasures
— Malware Infection and Impact
— rooting issues

— Anti-virus software issues

FFR

Kernel-level Memory Protection and Android

SECURITY IN LOW LAYER

FFR
N\

Kernel-level Protection : Implementation

DEP (Stack) - (1) v (1) v
Supported: 2.0-
DEP (Others) - (2) v v
ASLR (Stack) 4 (4 4
Supported: 4.3-
ASLR (Heap) - - ? /-0
ASLR (Modules) : - v /-8B Partially supported: 4.3-4)

(1) May vary in compiler flags for native applications.
(2) Allocation in portable way
(3) According to the Release note / Result in Android 4.0 emulator image

(4) Only if application supports ASLR

Kernel-level Protection : DEP

OK

Memory

Execute Execute

e Distinguish between “data” and “code” in hardware level and
Prevent “data” to be executed

e Need a Compiler Flag to enable DEP

— Not enabled until Android 2.2

— Kernel *disables* DEP for compatibility
e Solved in Android 2.3

Android Internals : Zygote S

-l T

Module I Module - Module

e All applications are forked from Zygote
— To reduce memory footprint

— Security parameter in Zygote is
very important

— All applications had “weakness”
until Android 2.2 (DEP is disabled)

Kernel-level Protection : ASLR

i darge’ Targe Targe Target arget arget arget |

Memory

e Randomize Memory Layout to prevent exploits
— Many of recent exploits utilize *specific* address

e Kernel settings : Randomize everything except heap (OK)
— But actually, modules (libraries) are not randomized (no good)
— Because of Prelinking

Security Concerns : Prelinking

Module Module

e Prelinking (user-mode mechanism)
— Locates system libraries to fixed addresses
— ASLR is effectively *neutralized™ because of Prelinking

e Makes exploitation very easy

FFR\
Kernel-level Protection : ASLR in Android 4.0?

e 2011/10: Still no real Android 4.0 device...
— Android 4.0 SDK emulator image is available now

e Google have announced ASLR is introduced in Android 4.0 ()
— Still no ASLR in the emulator image...
— | expect “proper” ASLR is implemented!

(1) http://developer.android.com/sdk/android-4.0-highlights.html

Conclusion
e Kernel-level Protections are not so effective

— Possibility: Native Code exploitation

e Improper build settings can be fixed
— Fixed by default in Android 2.3

e Prelinking can weaken kernel-level protection

— CPU performance increasing
— Could be fixed! (Android 4.0)

FFR
\

How Android system works?

APPLICATION LAYER
MECHANISMS

FFR
Android Applications

e (Quite different than other platforms
— Intent-based communication

e Android Internals
— Package and Manifest
— Permission system
— Intent
e Activity
e Broadcast and BroadcastReceiver

Android : How application work
[Package.apk

Install

Invoke Application

Callback on Event

e Applications are contained in the Package

e Register how “classes” are invoked using Manifest
— System calls application “classes” if requested
— Activity, Broadcast, ...

Android : Package

(APK File (ZIP format)

AndroidManifest.xml
WERITEN

classes.dex
(Program)

e Package itself is only a ZIP archive
e AndroidManifest.xml (Manifest)

— Application information, permissions

— How classes can be called (Activity, BroadcastReceiver...)
e Immutable on installation

— Can be “updated” along with whole package

Android : Package (Permission)

The Internet

e Abstract “Capability” in Android system

— More than 100 (internet connection, retrieve phone number...)
e No permission, No operation

— Permission is the key of Capability

Android : Intent

(

(Choose Apps)

Post to Twitter

Intent and multiple
applications (Activities)

e |ntent
— Send/Receive Message containing action, target, ...

e |ntent are used in many form
— Inter-Application Communication
— Event Notification

Android : Intent (Activity)

(

(Choose Apps)

Post to Twitter

+Intent: SEND; TEXT
___—d

Intent and multiple
applications (Activities)

e Activity = Unit of “Action” with User Interface

— Specifying object type (target) and action,
Activity is called by the system automatically

Android : Intent (Broadcast)

Receiver '

sendBroadcast .
_— .. Receiver ...
NT
; : -

Receiver ...
Intent and Broadcast
(Battery Event Notification)

e Broadcast : Feature to Receive system/app-generated Events

— All associated (and registered)
BroadcastReceiver classes are invoked

Android : Intent (Ordered Broadcast)

~ P=100

Receiver Receiver

Normal: sendBroadcast
P=100

Receiver

P=0

P=999 R
O. Receiver O. Receiver * - —% O. Receiver

abortBroadcast

Ordered: sendOrderedBroadcast

e Broadcast can have “Order”
— Few broadcasts are sent “Ordered”

e Ordered Broadcast

— BroadcastReceiver class is invoked in order of Priority (later)
— Abort Processing Broadcast using “abortBroadcast” method

Android : Intent Filter

Broadcast

ah l%ecelver

Activity A Activity B

Action:
INSUFFICIENT BATTERY

MIME Type : text/html Protocol : http
Action : SEND Host : mypict.com
Action :VIEW

e.g. Application to upload text e.g. Application for e.g. Battery-related service
specific website

e Similar to File/Protocol Association in Windows
— Action (what to do), Category (how to do)
— File Type (MIME), Location, Protocol...

e Specify in the Manifest (AndroidManifest.xml)
— Android System manages all Intent Filters

FFR
Android : Intent Filter (Priority)

(High Priority D

P=999 P=100 P=0
Activity %)I Activity o w— —>I Activity

) P=0

O. Receiver O. Receiver * — —% O. Receive

Ordered: sendOrderedBroadcast abortBroadcast

e Priority in Intent Filter (associated with Activity / Broadcast)
— Higher Value = Higher Priority
— Ordered Broadcast

— Activity

FFR

Summary

e Android System
— Package / Manifest
— Permission System

e [ntent-based Features
— Activity
— Broadcast
e Ordered or not

e Intent Filter to help inter-application communication
— Flexibleness
— Priority

FFR

Android Malware and Countermeasure Issues

SECURITY AND THREATS

FFR
Android Security and Threats

Many malwares and Many anti-virus software
— Malware impacts
— Is Anti-virus software effective?

Malware
— Trends and Characteristics

How Anti-virus software work?

— Issue: Insufficient Privileges

rooting issues
— How security has broken?
— Countermeasure, and problems still left

FFR_
Android Malware : 2009

e Foundon 13 Jan (McAfee)
— CallAccepter, Radiocutter, SilentMutter
— Targeting rooted Android 1.0 devices
— Denial of Service

e Released on 26 Oct : Mobile Spy
— Paid Spyware (Record SMS, GPS, incoming/outgoing calls)
— Similar to “Karelog” (2011) in many ways

e Different Type of Attack

— Not so related to Cybercrime

FFR_
Android Malware : 2010

e Found on 10 Aug (Symantec) : FakePlayer.A
— First “real” Android threat

— Distributed in Russian website
masquerading as a harmless movie player

— Making money utilizing Premium SMS

e Checkpoint : Modern Cybercrime and Android

— Thereafter, Android malware became more “malicious”

FFR_
Android Malware : 2011

January : Repackaged Android Apps
— Redistribute “tainted” Android applications

March: Undeletable Malware

— Install code to the System Partition

e June: Self-updating Malware
— Download and Execute the code dynamically (DexClassLoader)

July, October : Malware utilizing Application Updates

— Updated application include malicious code

FFR
N

Android Malware : Characteristics

e C(lassification
— Spyware
— Backdoor
— Dialer (utilizing premium services)

e China, Russia...
— APN/telephone number in specific country
— String resources

e Messaging Channel
— HTTP
— SMS

FFR
\

Android Malware : Characteristics (Premium Services)

e Paid SMS/telephone services
— Japan : “Dial Q2”
— Paid numbers/services have no borders

e Utilizing Premium Services : Dialer
— Dial Premium Services and Make Money *directly*
— Dialers Reborn

— Android Smartphones

S -
\

Android Malware : Utilizing Intent Filter

e Receive Broadcasts to (steal information | run automatically | ...)

— 39/44 malware samples

e “Receiving SMS” is a Ordered Broadcast event

— BroadcastReceiver with higher priority can *hide* SMS message
(hidden from preinstalled SMS application)

— Can hide malicious commands

— 14/44 malware samples

FFR_
Android Malware : Evolution

I”

e Still no “real” obfuscation

— Easy to analyze

e Evolving Rapidly
— DroidDream

Use exploits to gain root privilege and install
malicious packages silently

— Plankton
Download DEX file (Dalvik byte code) and
Execute it dynamically using class loader

e Refined Android malwares will cause problems
(specially, the one utilizing rooting techniques)

FFR

Anti-virus : How it works? N\

Mount SD card Open some Files
Receive SMS Install Package

Boot the Device

e Utilizing *many™* of Intent Filters and Broadcasts
— Real-time scan (partially)

— Scan Downloaded Files / Applications

— Scan SMS messages

Anti-Virus Driver

e Anti-virus software is working as a normal Android app
— Normally implemented as a driver (PC)

e Android as a Sandbox

— Prevent Access to Other Processes
— Blocks Anti-Virus software access as well
— No driver can be installed

FFR

Anti-Virus : Issues

e Collecting Samples

— Vary in Security Vendors
— Android Market : Automated Crawler is Prohibited

FFR
\

Anti-virus : Same Privilege

e Same Privilege : Malware and Anti-virus Software
— Can Neutralize each other
e Dynamic Heuristics is not easy
— No way to intercept system calls
— Signature issues
— Protect partially

e Still, normal existing malware can be
detected and warn to the user

e If malware can gain higher privilege...
— @Gaining root privilege = rooting

FFR
\

rooting

e Gaining Administrator Privileges (not available by default)
— Specially, utilizing local vulnerabilities

e rooting vulnerabilities
— CVE-2009-1185 (exploid)
— [no CVE number] (rage against the cage)
— CVE-2011-1149 (psneuter)
— CVE-2011-1823 (Gingerbreak)
— [no CVE number] (zergRush)

e Chip/Vendor-specific vulnerabilities!

FFR

rooting : Vulnerabilities (1)

e Logic Errorin suid program
— Some Android Tablet: OS command injection

[not available in public slides]

Can invoke arbitrary command in root privileges.

FFR

rooting : Vulnerabilities (2)

e Improper User-supplied buffer access
— Some Android smartphone: Sensor Device

[not available in public slides]

Can write [not available] to arbitrary user memory, bypassing copy-on-write.
Destroying setuid function can generate root-privilege process.

FFR
\

rooting : The Real Problem

e Malware can Exploit same Vulnerability
— Malware could gain higher privileges

— Avoid Anti-virus software

e rooting breaks some security mechanisms
— Intent Filter priority value (associated with Activity)
— Permission System

e Security software may be neutralized

Broken Security : Activity Priority (1)

(High Priority

P=999 P=100 P=0
User Activity %)I System Activity = = —>I User Activity
} - L 2
B | e | P=9990 P=0
| User Activity User Activity

e High priority Activity enables hooking
— Dangerous

— Reserved for System Applications

FFR
Broken Security : Activity Priority (2)

P=0 P=0

SYSTEM Activity %)I System Activity = = —>I User Activity

o
Real Web Browser

Browser Hooks

e |f malicious package is installed in the System Partition,
malware can utilize higher priority of Activity

— Hook implicit Intents
— e.g. Hook web browser-related Intents for phishing

e Does not work since Android 3.0
(because of Browser application changes)

Broken Security : Permission (1)

INSTALL PACKAGES permission

INSTALL_PACKAGES

System App

_———

e Reserved Permissions
— Only available to Vendor Packages or Preinstalled Packages
— Bypassing : There’s a way other than modifying System Partition...

Broken Security : Permission (2)

INSTALL PACKAGES permission

UID=0 (root)

User App System App
e ——-

e Inroot process, all Permissions are granted
— No additional security checks (not even manifest checks)
— Enables silent installation for example
e GingerMaster utilizes this behavior (indirectly)

FFR
N\

rooting : Countermeasures and Issues (1)

e Remove found vulnerabilities

— Not so easy to patch...
(http://www.ipa.go.jp/about/technicalwatch/pdf/110622report.pdf)

e Limit root user : Linux Security Modules (LSM)

— SHARP Corp. : Deckard / Miyabi
e /system partition is prohibited (cannot be re-written)
e ptrace (Debugging) is prohibited
e Prevents DroidDream / DroidKungFu infection

— Prevent root user to be utilized
e Current LSMs are not enough though...
e Black Hat Abu Dhabi 2011

FFR
\

rooting : Countermeasures and Issues (2)

e Limiting root user is not enough
— Permission checks
— Making secure OS policy is difficult
— Anti-virus software privilege is left weak

e Protection specific to Android

e Enabling Privilege Escalation for Security is needed!

Conclusion
e Malware and Anti-virus software is evolving

— But, we cannot protect whole system.

e rooting breaks security and neutralize Anti-virus software
— Even if malware could be found, it could be undeletable.

— To encounter, we need privilege improvement
and whole new protection system.

FFR

Can Android be protected?

BOTTOM LINE

FFR\
Is Android Protected? (1)

e Vulnerability Attacks
— Android depends on many of Native Code (e.g. WebKit)
— Kernel-level protection is currently not so effective
e Compiler Flag (DEP)
e Prelinking (disabling ASLR)

— If vulnerability is found in Android,
it is not difficult to exploit.

— It could possibly change in Android 4.0

FFR\
Is Android Protected? (2)

e Malware vs. Anti-virus software

— Malware (as a Trojan horse) works as a spyware, backdoor
or dialer utilizing Android features

— rooting can make Anti-virus software completely useless

e Currently, it is Difficult to protect Android devices

FFR
What to do (1) o

e Technical Responsibility : Android Project (AOSP et al.)
— Make security mechanism Strict
e System Call-Level Protection (LSM)
e Secure Android Framework

— Help making Security Software

e e.g. Giving higher privileges for specific software
— Make Kernel-level Protection Better

e Removing Prelinking, ...

e ...it seems to be done!

FFR
What to do (2) b

e Technical Responsibility : Device Vendor

— Fix existing vulnerabilities (prevent existing malware)

— Verify vendor customization

e Not to break Android security mechanisms
(and not to prevent user rights)

. N
Conclusion
e Protection for Android is not enough, but not impossible to solve

— Currently, Users must be aware of threats
— Possibly, need to take resolute steps

e Work together to improve Android security
whilst keeping platform open

Thank you

\

Fourteenforty Research Institute, Inc.
http://www.fourteenforty.jp

