Machine learning for computer security

Junichi Murakami
Executive Officer, Director of Advanced Development Division

FFRI, Inc.
http://www.ffri.jp
Agenda

1. Introduction
2. Machine learning basics
 - What is “Machine learning”
 - Background and circumstances
 - Type of machine learning
 - Implementations
3. Malware detection based on machine learning
 - Overview
 - Datasets
 - Cuckoo Sandbox
 - Jubatus
 - Evaluations
 - Possibility for another applications
4. Conclusions
5. References
Introduction

- First this slides describes a basis of machine learning then introduces malware detection based on machine learning

- The Author is a security researcher, but is not an expert of machine learning

- Currently the malware detection is experimental
What is “Machine learning”

- By training a computer, letting the computer estimate and predict something based on the experience
- Based on artificial intelligence research
Background and circumstances

- Recently, big data analysis attracts attention
 - E-Commerce, Online games, BI (Business Intelligence), etc.
 - The demand would probably increase more through spreading the M2M

- Machine learning as method for big data analysis
 - Analyze data and estimate the future
 - Penetration rate is different by each industry
 - In IT security, not enough used yet
Type of machine learning

- “Machine learning” is a general word which contains various themes and methods.
- Roughly it can be classified as shown below.
- Currently, online learning is minor compared to the other.
Type of machine learning (cont.)

- **Batch learning**
 - processing all stocked data at once
- **Online learning**
 - processing data one after another (new data comes successively)

- **Supervised**: train by labeled data
 - classification, regression, recommendation, etc.
 eg. apple=fruit, tomato=vegetable, pineapple=???

- **Unsupervised**: train by non-labeled data
 - clustering (grouping by similarity),
 anomaly detection (detect outlier, changing point, etc.)
Implementations

• The specific method of each tasks are mainly researched on academic(#{This slides doesn’t mention them}

• Examples of available frameworks and libraries
 – Hadoop
 • Hadoop doesn’t have machine learning function but Hadoop-based 3rd party frameworks are available
 – Apache Mahout
 • Representative of Hadoop-based framework above
 • Supports clustering, classification, etc. with batch learning
 – Jubatus
 • Distributed online machine learning framework(mention later)
 – Other libraries
 • Libsvm - http://www.csie.ntu.edu.tw/~cjlin/libsvm/
 • dlib ml - http://dlib.net/ml.html
 • Shark - http://shark-project.sourceforge.net/

eg. ICML- http://icml.cc/2013/
Malware detection based on machine learning

• Making a malware detection based on classification
 – predict(check) if input program file is malware

• Steps
 1. Prepare training set and test set for malware and benign respectively
 2. Select features from datasets, and convert them to feature vectors (FV)
 • Basically, the task of expert about applied field
 • Select features based on each own experience and knowledge
 • We mainly extracted API calls log recorded by Cuckoo Sandbox
 3. Train by FV added label (malware or benign)
 4. Classify the test set by extracting FV from them
 • This time, we used Jubatus for machine learning framework
Overview

malware

Cuckoo Sandbox

dynamic analysis

original data set (json-style log)

test set

benign

training set

feature selection

convert to FV

train jubatus

test jubatus

TPR: X%
FPR: Y%

TPR: True positive ratio
FPR: False positive ratio
Datasets

- Malware / 2641 (training set: 1320 / test set: 1321)
 - Random sample from collected malware in latest 6 months
 - TPR is not good enough based on metascan(#) results (over 10AVVs)
 - Average TPR: about 30%, best TPR: about 60%

- Benign / 1803 (training set: 893 / test set: 910)

http://www.opswat.com/products/metascan
Cuckoo Sandbox - http://www.cuckoosandbox.org

- Open source automated malware analysis system
 - Execute malware inside virtual machine
 - Monitoring its behavior in runtime
 - Collaborate with VirusTotal(Hash search) and yara

- Execute each sample within 90 seconds

- Extract API calls and other information from log, then convert to FV
Cuckoo Sandbox (ex. API log)

```json
"calls": [
  {
    "category": "system",
    "status": "FAILURE",
    "return": "0xc0000135",
    "timestamp": "2013-02-28 12:03:49,478",
    "thread_id": "420",
    "repeated": 0,
    "api": "LdrLoadDll",
    "arguments": [
      {
        "name": "Flags",
        "value": "1242916"
      },
      {
        "name": "FileName",
        "value": "C:\\Windows\\system32\\V6P.dll"
      },
      {
        "name": "BaseAddress",
        "value": "0x00000000"
      }
    ]
  },
  {
    "category": "registry",
    "status": "SUCCESS",
    "return": "0x00000000",
    "timestamp": "2013-02-28 12:03:49,528",
    "thread_id": "420",
    "repeated": 0,
    "api": "NtOpenKey",
    "arguments": [
      {
        "name": "KeyHandle",
        "value": "0x00000058"
      },
      {
        "name": "DesiredAccess",
        "value": "1"
      },
      {
        "name": "ObjectAttributes",
        "value": "Registry\\MACHINE\\System\\Current\\Control\`
```
Jubatus – http://jubat.us/en

• Developed by Preferred Infrastructure, Inc. and NTT Software Innovation Center

• Latest version is 0.4.4 (21/06/2013)
 - 1st release: 0.1.0(26/10/2011)

• Open source, LGPL v2.1

• Distributed online machine learning framework
 - Can analyze daily collected malware and monitor those trend continuously
 - Can be scaled out by adding server

• Supports various machine learning
 - Classification, Regression, Recommendation, Anomaly Detection, etc.

• C++, Python, Ruby and Java bindings are available
Evaluations

- TPR and FPR are fluctuated depending type of FV and various parameters
- Current (Jun 2013) best result is shown as below
 - By comparison with traditional method like pattern matching, high TPR is confirmed
 - theoretically, FP would occur 8 files out of 1000 files (needs to be improved)
- Datasets is limited, so additional test is required

<table>
<thead>
<tr>
<th>malware(files)</th>
<th>benign(files)</th>
<th>TPR(%)</th>
<th>FPR(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1321</td>
<td>910</td>
<td>94.5495</td>
<td>0.8791</td>
</tr>
</tbody>
</table>

(Jun 2013)
Possibility of another applications

- Possible to apply to various field if we can collect data
 - Classification x malware -> detection (this trial)
 - Clustering x malware -> family analysis and new family detection
 - Anomaly detection x network traffic -> C&C detection
 - Anomaly detection x traffic pattern -> infected host detection
 - Anomaly detection x authentication log -> spoofing detection
 - and more...
Conclusions

- Machine learning is attracted a great deal of attention as a method of big data analysis

- Can apply to security technology
 - malware detection and other possibility are available

- Tried to make a malware detection experimentally
 - Leaving some problems, but we can expect it to be applied to detecting recent advanced malware
References

- Jubatus
 - http://jubat.us/en/

- Machine learning tutorials
 - http://www.slideshare.net/unnonouno/jubatus-casual-talks

- Automatic Analysis of Malware Behavior using Machine Learning
 - http://pi1.informatik.uni-mannheim.de/malheur/