Monthly Research

Current state of automotive network security

FFRI, Inc.

http://www.ffri.jp
Background

- Many electronic devices have been used by automobiles
- These devices are connected each other and communicate to control automobiles
- Recent years, automotive network has been connected to smartphones and the internet. It makes new threats turn up.
- This slides summarizes how automotive network security have been and what is expected as incoming threats.
Automotive networks

- Contemporary automobiles consist of many electronic devices.
- Electronic controls are used in many parts of automobiles such as engines, brakes and doors and they are connected each other.
 - They communicate each other and do proper controls
 - Display current speed
 - Locking a door and so on
- Representative automotive networks are CAN, LIN and FlexRay
CAN (Controller Area Network)

- De facto standard of automotive networks
- It connects ECUs (Electronic Controller Unit) and provides communication by broadcasting
- ODB-II port (for diagnostic use) can be used to access CAN

![Diagram of CAN network with ECBs controlling various functions such as lights, air conditioner, and a door.](image-url)
Reported problems about automotive networks

- In 2010, K. Koshcer at University of Washington published “Experimental Security Analysis of a Modern Automobile”
 - Shows practical security risks of CAN
 - Accesses CAN via ODB-II
 - DoS attack and rewriting memory on ECUs are feasible
 - Shows threats such as faking speed meter, disable brakes
 - Points out a possibility of malicious code injection into ECU
In 2013 at DefCon21, Charlie Miller presented actual proof of threats for automotive networks
- Presented concrete methods of analyzing CAN packets and result of the analysis
 - Ford Escape
 - Toyota Prius are the actual targets
- Showed actual proof of stopping engines and rewriting firmware
Problems and threats of CAN and ECU

- CAN is broadcast base protocol. It is easy to eavesdrop communications
- CAN’s specification does not have an authentication process
 - Arbitrary packet can be sent to ECU
 - ECU do not have method to authenticate it
 (However, diagnostic protocol (UDS) has an authentication standard for ECU implementation)
- Rewriting ECU programs is possible

Trade-off against requirements for automotive networks such as real-time processing, maintainability, cost
New threats

- Recent years, automotive network has been connected to smartphones and the internet
- It is now more likely to happen malware attacking and remote attack via smartphones
- Android devices connected to automotive and wireless adaptors also have been appearing

Possibility to access automotive networks remotely
Proposed measures

- Mainly 2 directions
 - Making conventional network more secure
 Example:
 - Cyber-Security for the Controller Area Network (CAN)Communication Protocol
 - Securing CAN communication itself. Make it possible to authenticate packets between ECUs.
 - New measures for new threats
 Example:
 - Towards a Secure Automotive Platform
 - Access control to automotive network using ARM TrustZone
 - Devices connected to automotive networks such as Android devices are the target (Threats as an attack vector)
 - Virtually switch CPU running Android and CPU communicates automotive networks.
 - No influence to automotive network when Android side has a problem
Summery

• Recent years, they point out the problems on CAN which is de facto standard of automotive networks
• Currently there are actual proof of intrusion into CAN via ODB-II port
• In future, it may be realized to the intrude as connection to automotive networks from more smartphones and the internet accelerates.
• It is proposed to secure network protocols (authentication, tampering detection) and to make access control to automotive network using TrustZone
• As more devices are connected to automotive networks, to keep taking actions to new threats are required
References

• 車載ネットワーク・システム徹底解説 (佐藤道夫 CQ出版社 2005)
• Experimental Security Analysis of a Modern Automobile
• Adventures in Automotive Networks and Control Units
 http://www.exploit-db.com/download_pdf/27404/
• 2011年度自動車情報セキュリティの動向に関する調査
• 2012年度自動車情報セキュリティの動向に関する調査
• 組み込みシステムのセキュリティ～～自動車情報セキュリティの視点から～～
• Cyber-Security for the Controller Area Network (CAN) Communication Protocol
• Towards a Secure Automotive Platform
Contact Information

E-Mail : research—feedback@ffri.jp
Twitter : @FFRI_Research