

Monthly Research Behavioral-based malware clustering

FFRI, Inc http://www.ffri.jp

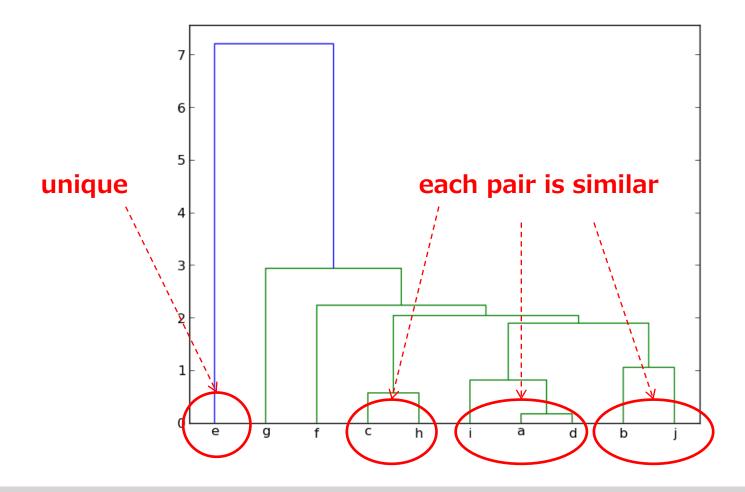
Ver2.00.01

<u>Agenda</u>

- 1. Background and purpose
- 2. Overview of clustering
- 3. An experiment
- 4. The Result
- 5. Considerations
- 6. Conclusions
- 7. Future Works

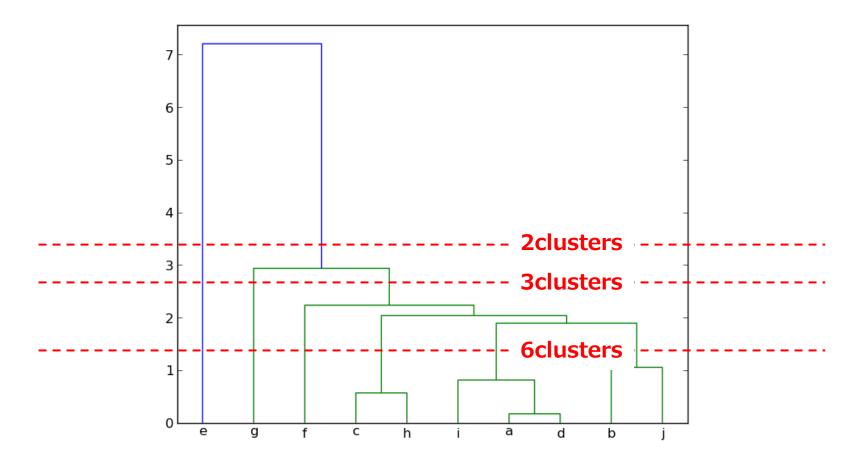
1.Background and purpose

- In recent year the number of malware has been extremely increased
- It is hardly possible to analyze all malware manually
 - req-1) Need to determine malware to analyze preferentially (novel unique malware, etc.)
 - req-2) Need to make analysis more efficiently (referring similar malware information, code diffing, etc.)
- In development of malware detection engines, it is difficult to use all the collected malware for prototyping and testing
 - req-3) Need to group malware and select representative samples
- Evaluating behavioral-based clustering as a sort of methods to solve the problem


2. Overview of clustering

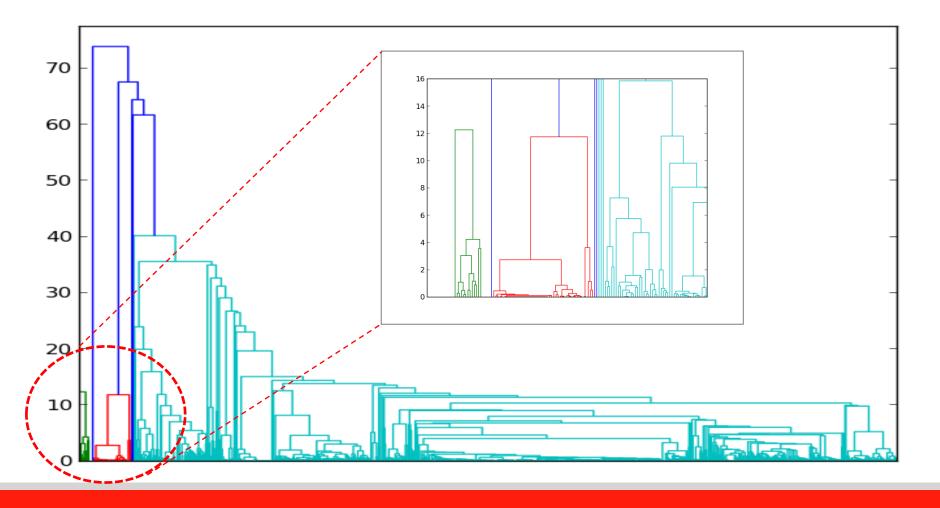
- Dividing data into some clusters (groups) based on "features"
 - "features" must be selected manually
- Mainly there 2 types of clusterings
 - Hierarchical clustering
 - Considering each data as a cluster and merging them as a tree based on similarities or distances
 - The result is shown as dendrogram(tree)
 - eg. single linkage, complete linkage, average linkage, ward, etc.
 - Non hierarchical clustering
 - Dividing data into some groups based on its similarity
 - Hard clustering(data belong to a cluster) and Soft clustering (data might belong to some clusters)
 - eg. k-means, mixture model, NMF

2.Overview of clustering / Hierarchical clustering


An example of dendrogram (alphabets on x-axis is corresponding to each datum)

2. Overview of clustering / Hierarchical clustering

Capable of considering a result as N clusters depending on each depth


3.An experiment

- Applying ward's method(hierarchical clustering)
 - Most non hierarchical clusterings have to be specified a number of clusters
 - Determining the best cluster size is also problem
 - Using 3-gram of API-calls(no args) with weighting by tf-idf as features
- Datasets
 - Sampling 1,000 malware randomly from our collections
 - Confirming the detection rate using VirusTotal based on hash values
 - Most of vendors detect around 80% of them
- Software
 - Extracting each malware's API-calls using Cuckoo Sandbox 0.6
 - Using Scipy(and Matplotlib) for clustering

4.The result

• Mainly it was divided into 3 clusters (green, red, light blue)

FFRI

5.Considerations

- a. Did the clustering work well? (clustering data based on functions and behaviors)
- b. Is it useful to determine novel unique malware? (req-1)
- c. Does it boost manual malware analysis? (req-2)
- d. Is it helpful to sample worthful data? (req-3)

5.Considerations / a. Did the clustering work well?

- Selecting 3 pairs which are similar in the deepest level of clustering
- Comparing both malware's functions and behaviors for each pairs
 - P-1(MD5 and detection name)
 - aac95e967b1ce621bd2b1a5854d0294d (HEUR:Trojan.Win32.Generic)
 - 69fcc9c0dca876307d97a64683936bad (Unknown)
 - P-2
 - 5dfca9602289f20f13902c4ed3710fb2 (HEUR:Trojan.Win32.Generic)
 - 90c4af98638d7d9418f2e29f55ec6c9f (HEUR:Trojan.Win32.Generic)
 - P-3
 - 9f267ae8fb419f2071795803216a3455 (Trojan.Win32.Jorik.Buterat.nwr)
 - dadcb4ab9827f66ba5bd350d78b902cc (Backdoor.Win32.Buterat.zqy)

<u>P-1</u>

- Result
 - Both malware might be belong to the same family, or they might be generated by the same tool with different configurations
- Common points
 - Generating a 23148 bytes data file with same MD5 under C:¥Windows¥Registration
 - Accessed registry keys and created mutexes are identical
 - Encoding method for accessing file is the same
 - Containing ASCII strings in PE are mostly common
 - Registering itself to the same 2 ASPEs(Auto-Start Extensibility Point)
- Difference
 - A dropped executable's MD5 hash are different
 - Detection statuses are much different('Unknown' is mostly undetectable)

P-1 / Accessed registry keys (completely matched)

"keys": [

"HKEY_LOCAL_MACHINE¥¥Software¥¥Microsoft¥¥COM3", "HKEY_LOCAL_MACHINE¥¥Software¥¥Classes", "HKEY_LOCAL_MACHINE¥¥Software¥¥Classes¥¥CLSID", "CLSID¥¥{304CE942-6E39-40D8-943A-B913C40C9CD4}", "CLSID¥¥{304CE942-6E39-40D8-943A-B913C40C9CD4}¥¥TreatAs", "¥¥CLSID¥¥{304CE942-6E39-40D8-943A-B913C40C9CD4}*¥InprocServer32", "¥¥CLSID¥¥{304CE942-6E39-40D8-943A-B913C40C9CD4}¥¥InprocServer32", "¥¥CLSID¥¥{304CE942-6E39-40D8-943A-B913C40C9CD4}¥¥InprocServer32", "¥¥CLSID¥¥{304CE942-6E39-40D8-943A-B913C40C9CD4}¥¥InprocHandler32", "¥¥CLSID¥¥{304CE942-6E39-40D8-943A-B913C40C9CD4}¥¥InprocHandler386", "¥¥CLSID¥¥{304CE942-6E39-40D8-943A-B913C40C9CD4}¥¥InprocHandler386", "¥¥CLSID¥¥{304CE942-6E39-40D8-943A-B913C40C9CD4}¥¥InprocHandler386", "¥¥CLSID¥¥{304CE942-6E39-40D8-943A-B913C40C9CD4}¥¥InprocHandler386", "¥¥CLSID¥¥{304CE942-6E39-40D8-943A-B913C40C9CD4}¥¥InprocHandler386", "¥¥CLSID¥¥{304CE942-6E39-40D8-943A-B913C40C9CD4}¥

"HKEY_LOCAL_MACHINE¥¥Software¥¥Microsoft¥¥Rpc¥¥SecurityService",

"HKEY_LOCAL_MACHINE¥¥SYSTEM¥¥CurrentControlSet¥¥Services¥¥SharedAccess¥¥Parameters¥¥ FirewallPolicy¥¥StandardProfile",

"HKEY_LOCAL_MACHINE¥¥software¥¥microsoft¥¥windows nt¥¥currentversion¥¥winlogon", "HKEY_CURRENT_USER¥¥software¥¥microsoft¥¥windows¥¥currentversion¥¥run"

<u>P-2</u>

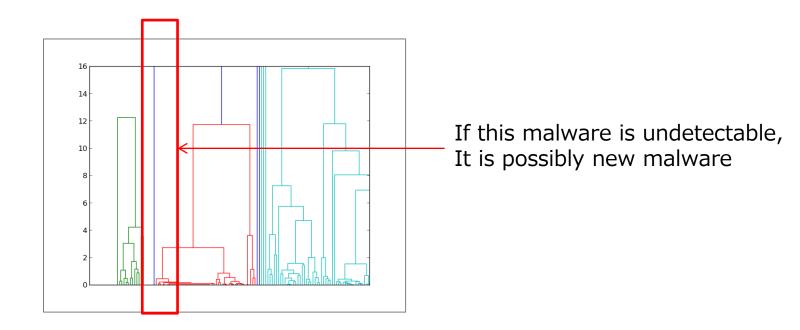
- Result
 - Both malware might be belong to the same family, or they might be generated by the same tool with different configurations
- Common points
 - The number of dropped files and MD5 and size for 4 out of the 6 files
 - Accessed registry keys and files and created mutexes are identical
 - Confirming registry settings for audio related keys such as aux, mixer
 - Changing error reporting settings on Windows
- Difference
 - 2 out of the 6 files are different

P-2 / Accessed registry keys (completely matched)

"keys": ["HKEY_LOCAL_MACHINE¥¥Software¥¥Microsoft¥¥Windows NT¥¥CurrentVersion¥¥IMM", "HKEY_CURRENT_USER¥¥SOFTWARE¥¥Microsoft¥¥CTF", "HKEY_LOCAL_MACHINE¥¥Software¥¥Microsoft¥¥CTF¥¥SystemShared",
 "Drivers¥¥wave",
"Drivers¥¥wave¥¥wdmaud.drv", "Drivers¥¥midi",
"Drivers¥¥midi¥¥wdmaud.drv",
"Drivers¥¥aux",
"Drivers¥¥aux¥¥wdmaud.drv",
"Drivers¥¥mixer",
"Drivers¥¥mixer¥¥wdmaud.drv",
 "HKEY_LOCAL_MACHINE¥¥Software¥¥Policies¥¥Microsoft¥¥PCHealth¥¥ErrorReporting", "HKEY_LOCAL_MACHINE¥¥Software¥¥Microsoft¥¥PCHealth¥¥ErrorReporting",
$"HKEY_LOCAL_MACHINE \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
"HKEY_LOCAL_MACHINE¥¥Software¥¥Microsoft¥¥PCHealth¥¥ErrorReporting¥¥InclusionList", "HKEY_LOCAL_MACHINE¥¥System¥¥Setup"],

<u>P-3</u>

- Result
 - Both malware might be belong to the same family, or they might be generated by the same tool with different configurations.
 - Same attacker might generate both malware in different period because of appearance of a common C&C FQDN
- Common points
 - The number of dropped files and MD5 and size for 4 out of the 6 files
 - Accessed registry keys and files and created mutexes are identical
 - Changing the same IE and explorer settings
 - C&C FQDN is the same (sharing one identical C&C FQDN where each malware has 3 C&C FQDN)
 - Process tree in execution is the same
- Difference
 - 2 C&C FQDNs out of the 3 are different


P-3 / Process tree

```
"pid": 404,
"name": "9F267AE8FB419F2071795803216A3455.bin",
"children": [
    "pid": 388,
    "name": "9F267AE8FB419F2071795803216A3455.bin",
    "children": [
         "pid": 1832,
         "name": "taskhost.exe",
         "children": [
              "pid": 1828,
              "name": "taskhost.exe",
              "children": []
```


5.Considerations / Is it useful to determine novel unique malware?

- Following malware is likely to novel unique ones if we assume that clustering works well based on the result above
 - Undetectable by current anti-virus software
 - As a result of clustering, it is represented by unique or sparse tree

5.Considerations / Does it boost manual malware analysis?

- If unknown malware are making up a group in a cluster, their functions and behaviors also should be similar (It would be helpful to analyze them)
- Malware detected by heuristic engines are also able to be classified more accurately
 - We confirmed the same "HEUR"-prefixed malware is classified to another family

5.Considerations / Is it helpful to sample worthful data?

- We can consider dividing data into arbitrary sized clusters and sampling data from each clusters
- Especially if trend of each clusters are different, it is useful
 - Stratified sampling
 - http://en.wikipedia.org/wiki/Stratified_sampling

6.Conclusions

- Need to consider schemes to use malware as assets since increasing of malware
- Therefore, we evaluated clustering with ward's method
- In limited evaluation, we confirmed it works well
- We can solve the requests using this result
 - Determining malware to analyze preferentially
 - Making analysis more efficiently
 - Valuable malware sampling

7.Future works

- Comparing other features and methods
- Considering methods to compare malware behaviors and functions
 - MAEC(Malware Attribute Enumeration and Characterization) might be useful
 - <u>http://maec.mitre.org/</u>
- More user-friendly UI/IF for a result of clustering
- Considering automation and systematization

Contact Information

- E-Mail: <u>research-feedback@ffri.jp</u>
- twitter: @FFRI_Research