
FFRI,Inc.

Monthly Research

History and Current State of Heap Exploit

Ver 2.00.01

FFRI, Inc
http://www.ffri.jp

FFRI,Inc.

• Heap exploit is to attack a software problem of managing heap
memory region.

• There are mainly 2 categories for memory corruption vulnerabilities.

– Memory corruption on stack

– Memory corruption on heap

• Main causes of them are “buffer overflow”

• This slides summarizes exploitation methods and mitigations so far
for heap overflow.

• The target is userland heap on Windows XP and later.

• There are many exploitation techniques corresponding to structures
and algorithms in heap, hence this slides summarize basic idea of
them and mitigations.

• Note that the each explanation in this slide is a lot simplified to make
it easy to understand main idea of heap exploit.

What is Heap Exploit?

2

FFRI,Inc.

What is Heap?

3

• Heap is region of memory dynamically allocated during executing a
code.

• Allocated memory area via malloc or new in C/C++

• The implementations of malloc and new are different among
platforms

• In Windows mainly following APIs are used to operate on heap.

– HeapCreate Create a heap

– HeapAlloc Obtain specific size of memory from heap
region

– HeapFree Release obtained memory region

FFRI,Inc.

Overview of Windows Heap management components

4

• Windows heap manager consist of mainly following 2 components.

– Frontend

– Backend

• Frontend is an interface to an application

– Optimizes allocating small memory blocks

– If it is able to respond to a request, it returns a memory block

– If not, pass the request to the backend.

– There are 2 frontend implementations. Lookaside List(LAL) on Windows XP and Low
Fragmentation Heap on Vista or later.

Frontend

Backend

Application

Windows Kernel

Windows XP ：
Lookaside list(LAL)

After Windows Vista :
Low Fragmentation Heap (LFH)

Heap management
component

FFRI,Inc.

• Heap is created by HeapCreate.

• _HEAP structure resides at the beginning of a heap and the address is returned as a
HANDLE.

• _HEAP structure contains information to manage the heap.

• By passing a HANDLE and size to HeapAlloc it returns the requested size of memory.

• Applications can save data into the returned memory region.

• To manage heap there is 2 bytes management information(Chunk header) just before
allocated memory.

• Regions not allocated yet are managed as free chunks

Basics of Heap API

5

hHeap

_HEAP

buffer

Chunk Header

buffer

Chunk Header

buf

buf2

Free Chunk

Chunk
HANDLE hHeap = HeapCreate(...);
LPVOID buf = HeapAlloc(hHeap, ...);
LPVOID buf2 = HeapAlloc(hHeap, ...);

FFRI,Inc.

• As an application calling HeapAlloc or HeapFree in variety of order allocated chunks and
free chunks are fragmented.

• To manage free chunks Windows heap manager uses doubly cyclic linked list.

• Free chunks also have a chunk header

Managing Free Chunks(Backend)

6

_HEAP

buffer

Chunk Header

Free Chunk2

buffer

Chunk Header

Free Chunk1

Chunk
Header

Flink

Blink

Free Chunk3

Flink

Blink

Chunk
Header

Flink

Blink

Chunk
Header

Flink

Blink

Free Chunk1 Free Chunk2 Free Chunk3_HEAP

※ In Windows XP actual free chunks are not managed as a single linked list
but as a multiple linked lists. It is simplified here for the purpose of explanation of the exploit.

FFRI,Inc.

• When an allocated chunk is freed, and if the next chunk is also free these chunks are
coalesced

• The exploit explained next slide utilizes the process of unlinking of an element from a
doubly linked list.

• In figure below, when “buffer2” is freed coalescing happens.

HeapFree and Coalesce

7

_HEAP

buffer1

Chunk Header

buffer2

Chunk Header

Free Chunk1

Free Chunk2

Free

_HEAP

Free Chunk1

Free Chunk2’

Before freeing “Buffer2”, “Free Chunk1” and “Free Chunk2” is
linked as linked list.
When “buffer2” is freed “buffer2” and “Free Chunk2” make bigger
free chunks(Free Chunk2’) and “Buffer2” and the “Free Chunk2’”
will be linked.
In this process, “Free Chunk2” is removed from the linked list by
the code like following.

// Remove “Free chunk2” from linked list
[Free Chunk2]->Blink->Flink = [Free Chunk2]->Flink
[Free Chunk2]->Flink->Blink = [Free Chunk2]->Blink

buffer1

Chunk Header

* This process happens only when the frontend(Lookaside list) is not used and the backend is used for process of freeing.
To make use of this process for actual attack one must make such conditions.

Before the free After the free

FFRI,Inc.

• Heap exploitation feasible up to Windows XP SP1

• By rewriting Flink and Blink of a free chunk, writing arbitrary 4byte into
arbitrary address.

• Assume that the head of “Free Chunk2” in the previous slide is rewritten by
overflow.

• On coalescing, the values of Flink and Blink are referenced and the values are
written into the arbitrary addresses.

Basic Heap Exploit

8

Chunk
Header

Flink

Blink

Overflow

// [Free Chunk2]->Flink and [Free Chunk2]->Blink is rewritten.
[Free Chunk2]->Blink->Flink = [Free Chunk2]->Flink
[Free Chunk2]->Flink->Blink = [Free Chunk2]->Blink

Write an arbitrary value into an arbitrary address

By overwriting a function ptr with an arbitrary address, arbitrary code can be executed.
 Using a function ptr in PEB (Process Environment Block) is one of the well know methods.
2 lines of the code above are executed at the same time, attempting overwriting a function

pointer automatically writes the address of the function pointer itself(e.g. 0x7FFDF01C) into
the head of the address where the function ptr points to. To make the attack successful
the value(0x7FFDF01C) must be able to be executed by CPU.

Free Chunk2

FFRI,Inc.

Mitigations in Windows XP SP2

9

• Mainly following 3 mitigation are introduced into Windows XP SP2

• Cookie in chunk header

• 8bit checksum(cookie) is introduced in chunk header.

• By validating its value it can detect overwrite of a chunk header.

• The value of a cookie is based on the address of the chunk.

– Safe unlinking

• Before removing an element from doubly linked list it checks if
following condition is met.

[Chunk]->Flink->Blink == [Chunk]->Blink->Flink == [Chunk]

(Confirming if next/prev elements also point to the element)

– PEB Randomization

• Randomize the address of PEB(Process Environment Block).

• PEB contains values and addresses used by attackers not only in heap
exploit.

• This randomization makes the success rate of attacks low.

FFRI,Inc.

Bypassing Windows XP SP2 mitigations

10

• Using lookaside list

– Freeing a chunk via HeapFree is handled by lookaside list first

– Lookaside lists are singly linked lists of free chunks in each sizes.

– If memory chunk is requested via HeapAlloc, it first checks if there is a
free chunk in lookaside list and returns it if one exists.

Chunk
Header

Flink

Blink

Flink

Blink

Chunk
Header

Flink

Blink

Chunk
Header

Flink

Blink

Free Chunk1 Free Chunk2 Free Chunk3

Lookaside List

• Lookaside list is multiple singly linked list for each size of chunks.
• In one singly linked list the same size of chunks are linked.
• （Figure above depicts one of the lists）
• 4 chunks at maximum in one list.
• （If more chunks of the same size are freed, it is handled by the backend)
• Adding/Removing a chunk is done on first entry of a list.

FFRI,Inc.

Bypassing Windows XP SP2 mitigations(Cont.)

11

• Using lookaside list

– Important 2 mitigations does not work on lookaside list

• Allocating a chunk from lookaside list does not make use of cookie

• Safe Unlinking is not done (because it is not doubly linked list)

– Assume in following figure header region of “Free Chunk1” is overwritten.

– Then subsequent 2 calls of HeapAlloc allocates a chunk from an arbitrary address
specified by the overflow

Chunk
Header

Flink

Blink

Flink

Blink

Chunk
Header

Flink

Blink

Chunk
Header

Flink

Blink

Free Chunk1 Free Chunk2 Free Chunk3

Lookaside List

Overflow

Another region of memory

First HeapAlloc returns Free Chunk1 and
second HeapAlloc returns this region(arbitrary address)

First
Alloc

Second
Alloc

FFRI,Inc.

_HEAP

Bypassing Windows XP SP2 mitigations(Cont.)

12

• Using lookaside list

– Overflow to make Flink have an address of a region containing a function
pointer

– If data written in the region allocated from subsequent second HeapAlloc
can be controlled, the pointer can be rewritten by an arbitrary address.

– In the figure below, Flink uses a function pointer in _HEAP structure
(This function pointer is used and called in heap management process)

• There are other tactics for exploitation for mitigation in XP SP2.

Chunk
Header

Flink

Blink

Chunk
Header

Flink

Blink

Chunk
Header

Flink

Blink

Free Chunk1 Free Chunk2 Free Chunk3

Overflow

Func Ptr

FFRI,Inc.

Mitigation introduced in Windows Vista

13

• Low Fragmentation Heap

– Lookaside list is replaced with Low Fragmentation Heap

– Impossible to attack using lookaside list

• Randomizing Block Metadata

– Chunk header is xored with _HEAP->Encoding

– Overwriting chunk header with predicted cookie still results in unexpected
state of the chunk header.

• Enhanced entry header cookie

– Cookie value also checks values in chunk header

– Cookie had been calculated based on the chunk address but now it is
calculated/validated with values in a chunk header.

• Heap base randomization

– The base address of _HEAP structure is randomized

– Makes it difficult to overwrite data in _HEAP structure

• Heap function pointer encoding

– A function pointer in _HEAP structure is xored with a value

– Mitigations for rewriting a function pointer in _HEAP structure

FFRI,Inc.

Bypassing mitigations introduced in Windows Vista

14

• Overwriting _HEAP structure

– Overwrite _HEAP structure using heap overflow

– Overwriting a function pointer in _HEAP structure makes it possible to execute
arbitrary address

– But, several conditions must be met

• Chunk to be overflowed must be located lower address of _HEAP structure

• The address of chunk to be overflowed is predictable

• The size of overflow is enough big

_HEAP

Chunk

Overflow

A function pointer in _HEAP structure is xored but the value xored with
is also stored in _HEAP structure. Overwriting both values will result in
rewriting the function pointer with an arbitrary address.

FFRI,Inc.

Bypassing mitigations introduced in Windows Vista(Cont.)

15

• Other exploits such as followings have been presented.

– Rewriting _HEAP structure via LFH overflow

– Rewriting application objects via LFH overflow

– Rewriting a function pointer via freeing and reallocating _HEAP
structure

FFRI,Inc.

Mitigations introduced in Windows 8

16

• Prohibit freeing _HEAP structure

– Mitigations for the previous slide “Rewriting a function pointer via freeing and
reallocating _HEAP structure”

• Enhancement of a function pointer encoding in _HEAP structure

– The value xored with a function pointer in _HEAP structure had been also stored in
_HEAP structure. Overwriting both the value and the function pointer resulted in
rewriting the function pointer to an arbitrary address.

– The value is now saved in global and not in _HEAP structure

• Introducing guard page

– Guard pages are placed between various memory regions managed by a heap

– This restricts regions overwritten by overflow

• LFH allocation randomize

– If the placement of chunks in LFH is predictable, overflow may be able to rewrite
application’s important values. This randomization makes this technique difficult.

• Termination on exceptions in heap

– Makes process terminate when a non-fatal exception occurs in heap

– This makes difficult attackers to retry exploitation again and again.

• There are other mitigations not mentioned here.

– http://blogs.technet.com/b/srd/archive/2013/10/29/software-defense-mitigation-
heap-corruption-vulnerabilities.aspx

http://blogs.technet.com/b/srd/archive/2013/10/29/software-defense-mitigation-heap-corruption-vulnerabilities.aspx

FFRI,Inc.

Conclusion

17

• Successful heap exploit is getting really hard after introducing randomization
in chunk header and a function pointer encodings in _HEAP structure in
Windows Vista.

• Furthermore, randomizing allocations and introducing guard pages in
Windows 8 make it much harder to exploit heap overflow.

• But structures and algorithms used in current Windows heap implementation
are complex and it may lead new exploit techniques.

• There are a lot of exploitation tactics in public. See references for the details.

FFRI,Inc.

References

• Third Generation Exploitation

– http://www.blackhat.com/presentations/win-usa-02/halvarflake-winsec02.ppt

• Windows Heap Overflows

– http://www.blackhat.com/presentations/win-usa-04/bh-win-04-litchfield/bh-win-04-litchfield.ppt

• Reliable Windows Heap Exploits

– http://www.cybertech.net/~sh0ksh0k/heap/CSW04%20-
%20Reliable%20Heap%20Exploitation.ppt

• Windows Heap Exploitation(Win2KSP0 through WinXPSP2)

– http://www.cybertech.net/~sh0ksh0k/projects/winheap/XPSP2%20Heap%20Exploitation.ppt

• Exploiting Freelist[0] On XP Service Pack 2

– http://www.orkspace.net/secdocs/Windows/Protection/Bypass/Exploiting%20Freelist%5B0%5D%
20On%20XP%20Service%20Pack%202.pdf

• Windows Vista Heap Management Enhancements

– https://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Marinescu.pdf

• Understanding and bypassing Windows Heap Protection

– http://mirror7.meh.or.id/Windows/heap/Heap_Singapore_Jun_2007.pdf

• Heaps About Heaps

– https://www.insomniasec.com/downloads/publications/Heaps_About_Heaps.ppt

• Attacking the Vista Heap

– https://www.lateralsecurity.com/downloads/hawkes_ruxcon-nov-2008.pdf

18

http://www.blackhat.com/presentations/win-usa-02/halvarflake-winsec02.ppt
http://www.blackhat.com/presentations/win-usa-04/bh-win-04-litchfield/bh-win-04-litchfield.ppt
http://www.cybertech.net/~sh0ksh0k/heap/CSW04 - Reliable Heap Exploitation.ppt
http://www.cybertech.net/~sh0ksh0k/projects/winheap/XPSP2 Heap Exploitation.ppt
http://www.orkspace.net/secdocs/Windows/Protection/Bypass/Exploiting Freelist[0] On XP Service Pack 2.pdf
https://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Marinescu.pdf
http://mirror7.meh.or.id/Windows/heap/Heap_Singapore_Jun_2007.pdf
https://www.insomniasec.com/downloads/publications/Heaps_About_Heaps.ppt
https://www.lateralsecurity.com/downloads/hawkes_ruxcon-nov-2008.pdf

FFRI,Inc.

References

• Practical Windows XP/2003 Heap Exploitation

– http://www.blackhat.com/presentations/bh-usa-09/MCDONALD/BHUSA09-McDonald-
WindowsHeap-PAPER.pdf

• Preventing the exploitation of user mode heap corruption vulnerabilities

– http://blogs.technet.com/b/srd/archive/2009/08/04/preventing-the-exploitation-of-user-mode-
heap-corruption-vulnerabilities.aspx

• Understanding the Low Fragmentation Heap

– http://illmatics.com/Understanding_the_LFH.pdf

– http://illmatics.com/Understanding_the_LFH_Slides.pdf

• Windows 8 Heap Internals

– http://media.blackhat.com/bh-us-
12/Briefings/Valasek/BH_US_12_Valasek_Windows_8_Heap_Internals_Slides.pdf

• Advanced Heap Manipulation in Windows 8

– https://media.blackhat.com/eu-13/briefings/Liu/bh-eu-13-liu-advanced-heap-WP.pdf

• Software Defense: mitigating heap corruption vulnerabilities

– http://blogs.technet.com/b/srd/archive/2013/10/29/software-defense-mitigation-heap-corruption-
vulnerabilities.aspx

19

http://www.blackhat.com/presentations/bh-usa-09/MCDONALD/BHUSA09-McDonald-WindowsHeap-PAPER.pdf
http://blogs.technet.com/b/srd/archive/2009/08/04/preventing-the-exploitation-of-user-mode-heap-corruption-vulnerabilities.aspx
http://illmatics.com/Understanding_the_LFH.pdf
http://illmatics.com/Understanding_the_LFH_Slides.pdf
http://media.blackhat.com/bh-us-12/Briefings/Valasek/BH_US_12_Valasek_Windows_8_Heap_Internals_Slides.pdf
https://media.blackhat.com/eu-13/briefings/Liu/bh-eu-13-liu-advanced-heap-WP.pdf
http://blogs.technet.com/b/srd/archive/2013/10/29/software-defense-mitigation-heap-corruption-vulnerabilities.aspx

FFRI,Inc.

Contact Information

E-Mail : research—feedback@ffri.jp

Twitter: @FFRI_Research

20

mailto:research—feedback@ffri.jp
https://twitter.com/FFRI_Research

