About *SE for Android*

- Security enhancement for Android developed by NSA

- Worked with Android Open Source Project (AOSP)
 - Enforcing for installd, netd, vold and zygote in Android 4.4 (KitKat)
 - Permissive for other processes and apps
 - There are labeled, but not enforced
 - In the near future: All android apps enforced by SELinux
Threat model

- Root exploits
 - Linux kernel vulnerability CVE-2012-0056 (Mempodipper)
 - Incorrect permission checking with /proc/pid/mem
 - Privilege escalation may cause by code injection
 - Privilege escalation is prevented because SELinux restricts original SELinux contexts
 - Incorrect access controls
 - Mobile (LOOK-11-001)
 - Created files without setting umask
 - Information leakage may cause by malicious app
 - SELinux isolates app’s resources from other app using SELinux contexts
History of SE for Android

- 2012.01 SE for Android releases
- 2012.03 Samsung collaboration begins
- 2013.04 First device SE ships - Galaxy S4
- 2013.07 First Android releases SE permissive - Android 4.3
- 2013.10 First Android releases SE enforcing(partially) - Android 4.4
Terminology

- Security Enhancements (SE) for Android
 - “Used to describe the overall framework for implementing SELinux mandatory access control (MAC) and Middleware mandatory access control (MMAC) on Android”

- SE Android
 - “The SEAndroid project enhancements are decreasing as more features move into AOSP”

- AOSP
 - “The Android code base distributed by Google”

Terms from http://selinuxproject.org/page/NB_SEforAndroid_1
Details of Security Enhancements (SE) for Android

- Additional kernel space components
 - Implemented security labeling for yaffs2
 - Instrumented Binder for SELinux

- Middleware MAC
 - Install-time MAC
 - Enterprise Ops
 - Intent Firewall

- User space tools
 - Extending Bionic Libc
 - Porting libselinux and policytools

MAC : Mandatory access control
Middleware MAC

- SELinux cannot control user space event
 - In addition, zygote process control model cannot apply exec-based domain transition

- SE for Android integrates access control fundamentals into android middleware(such as zygote, dalvik runtime and installd)
Install-time MAC

- Whitelist/disable app enforced by PackageManagerService
 - policy example: external/sepolicy/mac_permissions.xml

- Linkage to SELinux policy via **seinfo** identifier
 - Installd and zygote uses this linkage information
seapp_contexts

See also AOSP source
sepolicy/seapp_contexts:

isSystemServer=true domain=system_server
user=system domain=system_app type=system_app_data_file
user=bluetooth domain=bluetooth type=bluetooth_data_file
user=nfc domain=nfc type=nfc_data_file
user=radio domain=radio type=radio_data_file
user=shared_retro domain=shared_retro
user=shell domain=shell type=shell_data_file
user=_isolated domain=isolated_app
user=_app seinfo=platform domain=platform_app type=app_data_file
user=_app domain=untrusted_app type=app_data_file

Identifying platform app using seinfo

Labeling 3rd-party app with untrusted_app by default
Enterprise Ops & Intent Firewall (Beta)

- **Enterprise Ops(eops)**
 - Controlling app operations (Extending AppOps)
 - Replaces permission revocation mechanism

- **Intent Firewall**
 - Controlling app interactions
 - Replaces Intent MAC

- Both features introduced in Android 4.3
 - Android 4.4 includes its mechanism only (AOSP not contains its policy yet)

```xml
<?xml version="1.0"?>
<app-ops>
  <debug/>
  <seinfo name="system">
    <op name="CAMERA"/>
  </seinfo>
</app-ops>
```

Example1: The eops policy will stop the camera being used by any system or default app

```xml
<?xml version="1.0"?>
<rules>
  <service log="true" block="true">
    <not><sender type="system"/></not>
    <intent-filter />
    <component-filter name="com.se4android.isolatedservice/.DemoIsolatedService"/>
  </service>
</rules>
```

Example2: This will stop any app that is not a system app from running the DemoIsolatedService service
Conclusions

• SE for Android project provides security enhancement mechanism and policy to improve existing android platform security
 – Satisfying extra security requirements for mobile devices usage such as enterprise and government organization

• Android device developers should understand SE for Android functions and policies
 – Even system app is restricted

• App developers should pay attention to SELinux's merged status on AOSP
 – Android 4.4 still grant permissive domains, but 3rd-party apps are restricted by SELinux in the near future
References

- Security Enhancements (SE) for Android™
 [link](http://seandroid.bitbucket.org/)

 [link](http://www.internetsociety.org/sites/default/files/Presentation02_4.pdf)

 [link](http://events.linuxfoundation.org/sites/events/files/slides/abs2014_seforandroid_smalley.pdf)

- The Flask Security Architecture: System Support for Diverse Security Policies
 [link](http://www.nsa.gov/research/_files/publications/flask.pdf)

- NB SEforAndroid 1
 [link](http://selinuxproject.org/page/NB_SEforAndroid_1)

- NB SEforAndroid 2
 [link](http://selinuxproject.org/page/NB_SEforAndroid_2)

- Iintent firewall(unofficial documentation)
 [link](http://www.cis.syr.edu/~wedu/android/IntentFirewall/)
Contact Information

E-Mail: research—feedback@ffri.jp
Twitter: @FFRI_Research