ARMv8-M TrustZone: A New Security Feature for Embedded Systems

FFRI, Inc.
http://www.ffri.jp
ARMv8-M Architecture

• Architecture for embedded devices (Cortex-M Processor family) which was announced in Nov 2015.

• In order to comprehensively support for embedded systems that require the characteristics of the conventional ARMv6-M/ARMv7-M architecture, ARMv8-M has prepared 2 sub-profiles.
 - Baseline
 • For Ultra-low-power products
 • Similar to the ARMv6-M
 - Mainline
 • A full-featured, microcontroller products and high-performance embedded systems.
 • Similar to the ARMv7-M

<table>
<thead>
<tr>
<th>Optional) DSP</th>
<th>(Optional) Floating-Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARMv8-M Mainline</td>
<td>ARMv8-M Baseline</td>
</tr>
</tbody>
</table>
TrustZone

- Security features that ARM processor provides.
 - Cortex-A family or next-generation Cortex-M processors

- It is possible to separate/isolate the security level by adding the security state.
 - e.g. Normal World & Secure World

- ARMv8-M architecture has a different mechanism than TrustZone to provide traditional ARMv8-A architecture, which is optimized for embedded systems.
TrustZone (ARMv7, ARMv8-A, etc…)

- Add a monitor mode, it is separated into “Normal World” and “Secure World”.
 - To transition monitor mode, use SMC instruction.
 - A kind of virtualization feature using the OS monitor.

- iPhone of Secure Enclave are known to have been using the TrustZone.

- For more information, please refer to the our research paper, which was published in March 2013. (Japanese only)
TrustZone (ARMv8-M)

- Add a secure state, it is possible into Non-secure Handler/Thread mode and Secure Handler/Thread mode.
 - The state transition to use the branch instruction.
 - System rises by default in the “Secure” state.

- Throughout the reminder of this article describes ARMv8-M TrustZone.
ARMv8-M TrustZone - Memory space separation

- In addition to the definition by the developer of microcontrollers and SoC, it can also be defined the software by utilizing the SAU and IDAU interfaces.

- Memory spaces can be divided into three. (See the figure on the right)

- State of the processor is dependent on definition of the memory space.

SAU: Software Attribution Unit
IDAU: Implementation Defined Attribution Unit
ARMv8-M TrustZone – Secure Gateway

- To call processing of the Secure region from the Non-Secure region, it is necessary to relay a secure gateway.
 - The first instruction of the function to be called from Non-Secure region MUST always SG (Secure Gateway) instruction.
 - SG instruction MUST be present in the NSC (Non-Secure Callable) region.

- In case of call processing of the Non-Secure region from the Secure region, push current state to stack and then branch to Non-Secure region.
 - When processing branch to the Non-Secure region, reserved value FNC_RETURN is set to Link Register. (LR)
 - When returning to Secure region branches to this Link Register. (FNC_RETURN)
ARMv8-M TrustZone - Secure Gateway

- If Non-Secure region program accessed directly to address of the Secure region occurs following exception.
 - In Mainline SecureFault(7), in Baseline HardFault(3) is an exception occurs in Secure State.
ARMv8-M TrustZone - Test Target

- Region number is assigned in the memory space defined by the aforementioned SAU and IDAU.
 - Possible to know whether it has the security attribute target is continuous by the region number.

- New TestTarget (TT) instruction to return security attributes and region number from the address.
 - By using TT instruction, it is possible to know address range of the array or structure is belong to the same region.
ARMv8-M TrustZone - example usage for embedded systems

- Even for embedded device architecture that supported the TrustZone, protection of data it is realistic also due to this technology for a variety of IoT and in-vehicle devices.

- For example, IoT device vendors by storing in advance the firmware in the Secure region, it can be expected that the reverse engineering measures.
Summary

- In this paper, we introduce the TrustZone of information that has published at this time in relation to ARMv8-M.
 - There is a specification change possibility in the future because some document is still Beta.

- In February 2016, the processor and evaluation board of ARMv8-M architecture has not been confirmed in the market.
 - For even compiler, GCC and Clang is currently working.

- For automotive, already HSM (Hardware Security Module) is present as a standard.
 - Therefore, semiconductor manufactures are mainly shipped microcontroller products that conform to this standard as automotive.
 - With the advent of the ARMv8-M, the future there is a possibility that products utilizing the TrustZone is announced.
References

- Whitepaper – ARMv8-M Architecture Technical Overview
 - https://community.arm.com/docs/DOC-10896
- ARM® コンパイラ ソフトウェア開発ガイド バージョン6.3
 0773dj/pge1446115999905_00009.html
- (動画) ARMv8-M architecture: what’s new for developers
 - https://youtu.be/V5zr5mPjAvU
- FFRI Monthly Research – セキュアハードウェアの登場とその分析
 - http://www.ffri.jp/assets/files/monthly_research/MR201303_Trust
 Zone.pdf

ARM® and TrustZone® are trademarks of ARM Ltd.