

Monthly Research 2016.10 STRIDE Variants and Security Requirements-based Threat Analysis

E-Mail: research-feedback[at]ffri.jp Twitter: @FFRI_Research FFRI, Inc. http://www.ffri.jp/en/

Table of Contents

- About threat analysis
- STRIDE Variants
 - STRIDE-per-Element
 - STRIDE-per-Interaction
 - Comparative the variants STRIDE
- Security Requirements-based Threat Analysis
- Conclusions
- References

About Threat Analysis

- This report illustrates threat analysis continued from previous research
- We explain STRIDE variants for enumeration of threats
- In addition, we introduce security requirements-based threat analysis method as one of the different choices

STRIDE-per-Element

- Apply to STRIDE elements of DFD to find threats
 The elements are Process, Data Flow, etc.,.
 - This method can find threats by the routine
- Process
 - 1. Retrieve elements from the DFD
 - 2. Find threats from element-STRIDE table
 - 3. Check whether the records in the table are appropriate
 - The table is not almighty

	S	Т	R	I	D	Е
External Entity	\checkmark		\checkmark			
Process	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Data Flow		\checkmark		\checkmark	\checkmark	
Data Store		\checkmark	?	\checkmark	\checkmark	

STRIDE-per-Interaction

- Find data flow at an intersection of a trust boundary
- Find threats at "origin, destination, interaction" in Dataflow
- About Trust Boundary
 - Borderline of the organization or interface
 - For example, between the Web server and browser
- Microsoft Threat Modeling Tool
 - It has been supported STRIDE-per-Interaction from version 2014
 - It analyzes also non-intersection data flow as an additional feature

STRIDE-per-Interaction

- Process
 - 1. Create a table of elements, interactions and potential threats
 - 2. Create a DFD
 - 3. Extract the data flow at the intersection of trust boundary
 - 4. Enumerate threats
 - Comparing interactions and origin or destination of data flow
 - 5. Create a table of the comparison result

Comparison of the STRIDE variants

- Students of the Chalmers University of Technology analyzed the same system using two STRIDE variants
 - Analysis target is a SecOC module of AUTOSAR
 - SecOC provides functions for secure communication between ECUs
 - True positives
 - Comparison of true threat rate
 - They were assessing the Microsoft Threat Modeling Tool which supports each variant

	Required Time	Total threats	True positives		Advantages		Disadvantages
STRIDE-per- Element	26.0H	99	54.55%	•	Short time The result is accurate	•	Dependent on individual skills The tool is hard to use
STRIDE-per- Interaction	32.5H	114	26.32%	•	Easy to understand the threats Easy-to-use tool	•	require relatively long time Complexity of applying to large system many false positive

FFRI,Inc.

Security Requirements-based Threat Analysis

- This method has been proposed by Masaru Matsunami of Sony DNA
- It extracts security requirements from design and specification
- It was used for threat analysis of "harmo" system by the Sony
- Process
 - Find "actor" and "assets" from specification documents
 - Extract threat event based on template ["actor" "can / can't" "read/write/execute" to "assets"]
 - Threat event: Malicious third party can read personal data
 - If necessary find also "Location"
 - Security requirement is found on the basis of threat events
 - Security requirement is found on the basis of threat events
 - Draw a security analysis graph on the basis of security requirements

FFRI,Inc.

Security Requirements-based Threat Analysis (cont'd.)

- About security analysis graph
 - A security requirement is written on top of a tree
 - The security requirement is a proposition
 - Nodes are written conditions to achieve the proposition
 - You can confirm whether there is a countermeasure at nodes

https://www.ipa.go.jp/files/000049366.pdf

Security Requirements-based Threat Analysis (cont'd.)

- Advantages
 - Available in an early design phase
 - DFD is not essential
 - It can also be used by a non-expert of threat analysis with knowledge database of a security analysis graph
- Disadvantages
 - Require relatively long time if there is no knowledge database of a security analysis graph

Conclusions

- STRIDE-per-Element
 - Required time is short, but tool is inconvenience
 - Good for the security specialist
- STRIDE-per-Interaction
 - Easier than the other method, but it takes a long time and many false positive
 - It will be good if you have enough resource for threat analysis
- Security Requirements-based Threat Analysis
 - Available in an early design phase
- There are various threat analysis methods
 - You should select suitable methods taking into conditions of threat analysis
 - Available time, accuracy, analyst level, etc.

References

- Threat Modeling
 - <u>http://threatmodelingbook.com/index.html</u>
- Chapter 6 Privacy Tools
 - <u>https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxzaWdzdGF3ZWJ8</u>
 <u>Z3q6NDRhNmE5N2JhYjQ0ZTkwOA</u>
- Vehicle Control Unit Security using Open Source AUTOSAR
 - <u>http://publications.lib.chalmers.se/records/fulltext/219822/219822.pdf</u>
- Threat Modeling requirements and design
 - <u>https://www.asteriskresearch.com/wp-</u> <u>content/uploads/2016/01/ThreatModeling</u> requirements and design20160204.pdf
- Chapter 3 STRIDE
 - <u>https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxzaWdzdGF3ZWJ8</u>
 <u>Z3g6MmY4ZTgxNmY5ODFhZWY5MA</u>
- (ISC)² Japan Chapter kickoff event
 - <u>http://isc2chapter.jp/wp-</u> content/uploads/2014/03/%E4%BB%95%E6%A7%98_%E8%A8%AD%E8%A8%88%E3%81%AE %E3%82%BB%E3%82%AD%E3%83%A5%E3%83%AA%E3%83%86%E3%82%A3%E5%88%86 %E6%9E%90.pdf
- Threat Analysis Method used for Sony "harmo"
 - <u>https://www.ipa.go.jp/files/000049366.pdf</u>
- FFRI Monthly Research 2016.9
 - <u>http://www.ffri.jp/assets/files/monthly_research/MR201609_Introduction_of_Threat_Analysis_Met_hods_JPN.pdf</u>