
#BHASIA @BlackHatEvents

Dirty Bin Cache: A New Code Injection Poisoning
Binary Translation Cache

Koh M. Nakagawa at FFRI Security, Inc.

#BHASIA @BlackHatEvents

$ whoami – Koh M. Nakagawa (@tsunek0h)

Security Researcher at FFRI Security, Inc.

• Vulnerability research on Arm-based Windows

• Recently started macOS security

• Found multiple vulnerabilities of macOS (TCC/SIP/Gatekeeper bypass)

• Gave talks at BHEU 2020 Briefings and CODE BLUE 2021

GitHub: https://github.com/kohnakagawa

https://github.com/kohnakagawa

#BHASIA @BlackHatEvents

Agenda

• Introduction

• Rosetta 2 internals

• Code injection on macOS: AOT poisoning

• Exploitation on macOS

• A similar code injection on Arm-based Windows: XTA cache poisoning

• Exploitation on Arm-based Windows

• Summary & key takeaways

#BHASIA @BlackHatEvents

Arm-based laptops are becoming popular

https://learn.microsoft.com/ja-jp/surface/surface-pro-9-overview https://www.apple.com/jp/mac/https://winbuzzer.com/2023/02/12/forecast-arm-cpus-to-reach-25-of-laptop-market-share-by-2027-xcxwbn/

https://learn.microsoft.com/ja-jp/surface/surface-pro-9-overview
https://www.apple.com/jp/mac/
https://winbuzzer.com/2023/02/12/forecast-arm-cpus-to-reach-25-of-laptop-market-share-by-2027-xcxwbn/

#BHASIA @BlackHatEvents

Translation/emulation technologies

https://www.youtube.com/watch?v=GEZhD3J89ZE

Rosetta 2

https://learn.microsoft.com/ja-jp/events/build-2018/brk2438

X86/x64 emulation

Translating and emulating are time-consuming.

Therefore, reducing these is essential.

https://www.youtube.com/watch?v=GEZhD3J89ZE
https://learn.microsoft.com/ja-jp/events/build-2018/brk2438

#BHASIA @BlackHatEvents

Binary translation result is cached

How x86 emulation works on Arm (from MSDN)
x86 emulation works by compiling blocks of x86 instructions into Arm64 instructions with optimizations

to improve performance. A service caches these translated blocks of code to reduce the

overhead of instruction translation and allow for optimization when the code runs again. The

caches are produced for each module so that other apps can make use of them on first launch.
https://learn.microsoft.com/en-us/windows/arm/apps-on-arm-x86-emulation

Rosetta 2 on a Mac with Apple silicon (from Apple Platform Security)
But the Rosetta runtime then sends an interprocess communication (IPC) query to the Rosetta

system service, which asks whether there’s an AOT translation available for the current

executable image. If found, the Rosetta service provides a handle to that translation, and it’s

mapped into the process and executed. https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf

https://learn.microsoft.com/en-us/windows/arm/apps-on-arm-x86-emulation
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf

#BHASIA @BlackHatEvents

My previous research at Black Hat EU 2020
A new code injection targeting Arm-based Windows

Named “XTA cache hijacking”

https://www.blackhat.com/eu-20/briefings/schedule/index.html#jack-in-the-cache-a-new-

code-injection-technique-through-modifying-x-to-arm-translation-cache-21324

https://www.blackhat.com/eu-20/briefings/schedule/index.html#jack-in-the-cache-a-new-code-injection-technique-through-modifying-x-to-arm-translation-cache-21324
https://www.blackhat.com/eu-20/briefings/schedule/index.html#jack-in-the-cache-a-new-code-injection-technique-through-modifying-x-to-arm-translation-cache-21324

#BHASIA @BlackHatEvents

My previous research at Black Hat EU 2020
Code injection by directly modifying X86-to-ARM (XTA) translation cache

An attacker can inject malicious code by modifying XTA translation cache

• It requires admin privileges, but it has a unique side effect that benefits an attacker

https://www.blackhat.com/eu-20/briefings/schedule/index.html#jack-in-the-cache-a-new-code-injection-

technique-through-modifying-x-to-arm-translation-cache-21324

https://www.blackhat.com/eu-20/briefings/schedule/index.html#jack-in-the-cache-a-new-code-injection-technique-through-modifying-x-to-arm-translation-cache-21324
https://www.blackhat.com/eu-20/briefings/schedule/index.html#jack-in-the-cache-a-new-code-injection-technique-through-modifying-x-to-arm-translation-cache-21324

#BHASIA @BlackHatEvents

Research motivation

Is there similar code injection for macOS Rosetta 2?

I started to study macOS security and

analyzed Rosetta 2 internals

#BHASIA @BlackHatEvents

Introduction to macOS security model

System Integrity Protection (SIP)

Restricts some dangerous operations such as

• Modifying system files

• Loading kernel extensions

• Debugging system processes

Root user cannot perform these operations

SIP is also known as rootless

-> Even root does not have full access to system, unlike traditional *NIX security model

#BHASIA @BlackHatEvents

Introduction to macOS security model

Even root cannot

delete system files

Even root cannot

access some files

#BHASIA @BlackHatEvents

Code injection on macOS

the alpha and omega of macOS exploits is to run code in the context of other applications

- @theevilbit https://theevilbit.github.io/shield/

https://theevilbit.github.io/shield/

#BHASIA @BlackHatEvents

Code injection on macOS
Why code injection?

Because macOS security mechanisms heavily rely on code signatures and its entitlements

• On macOS, entitlements grant various rights to the application

o E.g., an application needing to access some sensitive resources (camera, mic, messages, …) should have proper entitlements

• If we can execute code in the context of other applications, we can hijack trusts of them

o So, we can gain the rights of other applications by code injection

• Code injection is strictly prohibited on macOS

o E.g., hardened runtime is enabled for almost all applications

If we can find a new code injection technique on macOS, we can

exploit it to bypass security & privacy mechanisms

-> I started to explore code injection abusing Rosetta 2

#BHASIA @BlackHatEvents

Rosetta 2 internals & a new code injection

#BHASIA @BlackHatEvents

Installing Rosetta 2

Rosetta 2 is not installed by default

When you run an app that needs Rosetta 2, popup is raised

Can also be installed by softwareupdate command like

• softwareupdate --install-rosetta --agree-to-license

Installing Rosetta 2 does not require root privileges

• If not installed, an attacker can install it manually
https://support.apple.com/en-us/HT211861

https://support.apple.com/en-us/HT211861

#BHASIA @BlackHatEvents

Quick look at Rosetta 2

Rosetta 2 on a Mac with Apple silicon (from Apple Platform Security)
A Mac with Apple silicon is capable of running code compiled for the x86_64 instruction set using a

translation mechanism called Rosetta 2. There are two types of translation offered: just in time and

ahead of time.

Ahead-of-time translation

In the ahead-of-time (AOT) translation path, x86_64 binaries are read from storage at times the system

deems optimal for responsiveness of that code. The translated artifacts are written to storage as a

special type of Mach object file. That file is similar to an executable image, but it’s marked to

indicate it’s the translated product of another image.

https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf

https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf

#BHASIA @BlackHatEvents

AOT file
Contains translated Arm64 code

Mach-O 64bit (not special format)

Located at /private/var/db/oah/*/*.aot

AOT files are protected by SIP

We cannot modify these files even if we have root privileges

• Note that we can modify XTA cache files with administrator privileges on Arm-based Windows

SIP protected

Cannot show content even as root

#BHASIA @BlackHatEvents

Rosetta 2 components

Some Rosetta 2 components related to this research

translate_tool - A CLI tool for translating an x64 executable without executing it

runtime - A runtime library injected into a translated process

oahd - A management daemon of AOT files

oahd-helper - A translator of an x64 executable /Library/Apple/usr/libexec/oah

/usr/libexec/rosetta

#BHASIA @BlackHatEvents

Simplified execution flow

oahd

oahd-helper

Directory of AOT files (/var/db/oah)

2. Create a process

3. Translate it into an AOT file

AOT file #1

AOT file #2

…

AOT file #3

x64 process

x64 Mach-O

System Library #0

runtime

…

AOT file #3

4. The AOT file is mapped

1. Pass the file descriptor of

x64 Mach-O (via Mach IPC)

#BHASIA @BlackHatEvents

Simplified execution flow

oahd

oahd-helper

AOT file #1

AOT file #2

…

AOT file #3

x64 Mach-O

System Library #0

runtime

…

AOT file #3

5. Go to the AOT file

and continue its

execution

Directory of AOT files (/var/db/oah)

x64 process

#BHASIA @BlackHatEvents

translate_tool
CLI tool for translating an x64 executable

Translates an x64 executable without executing it

Sends a file descriptor of an x64 executable to oahd via Mach IPC

fileport_makeport() system call for

passing the file descriptor to oahd

$ translate_tool <path to x64 executable>

Creates an AOT file of

specified executable

#BHASIA @BlackHatEvents

AOT files are cached for reuse

How does Rosetta 2 determine whether the specified

x64 executable was previously translated or not?

But the Rosetta runtime then sends an interprocess communication (IPC) query to the Rosetta

system service, which asks whether there’s an AOT translation available for the current

executable image. If found, the Rosetta service provides a handle to that translation, and it’s

mapped into the process and executed.
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf

Apple Platform Security: “Rosetta 2 on a Mac with Apple silicon”

https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf

#BHASIA @BlackHatEvents

How to check the binary was previously translated?

oahd calculates the dedicated hash and uses it for checking

I named this hash “AOT lookup hash”

AOT files are saved under the /var/db/oahd subdirectory whose name is AOT lookup hash

• If there is a directory corresponding to the AOT lookup hash, oahd reuses the AOT file in this directory

But how oahd calculates the AOT lookup hash from an x64 executable?

• A possible candidate is calculating the cryptographic hash from the entire binary contents and the file path

• But this is time-consuming…

AOT lookup hash

#BHASIA @BlackHatEvents

How does Rosetta 2 calculate AOT lookup hash?

SHA-256 is calculated

from the following data

•full path

•Mach-O header

•uid

•gid

•mtime

•ctime

•crtime

•file size

#BHASIA @BlackHatEvents

How does Rosetta 2 calculate AOT lookup hash?

mtime: Time when file data last modified

ctime: Time when file status was last

changed (inode data modification)

crtime: Time of file creation

SHA-256 is calculated

from the following data

•full path

•Mach-O header

•uid

•gid

•mtime

•ctime

•crtime

•file size

#BHASIA @BlackHatEvents

How does Rosetta 2 calculate AOT lookup hash?

Code section of the target binary is not used for

calculating the AOT lookup hash

If we can modify the code section while keeping

the AOT lookup hash unchanged, we can cause

the hash collision

SHA-256 is calculated

from the following data

•full path

•Mach-O header

•uid

•gid

•mtime

•ctime

•crtime

•file size

#BHASIA @BlackHatEvents

A plan for code injection
Code injection by causing the AOT lookup hash collision

1. Inject shellcode

into a benign app 2. Create an AOT file

with translate_tool

3. Restore to the original

benign app while keeping the

AOT lookup hash unchanged

4. The AOT file is reused because

the AOT lookup hash is the same
/Users/ffri/a.out

5. Poisoned AOT file is

used for execution 😎

/Users/ffri/a.out /var/db/oah/../a.out.aot

Benign app

#BHASIA @BlackHatEvents

A plan for code injection
Code injection by causing the AOT lookup hash collision

1. Inject shellcode

into a benign app 2. Create an AOT file

with translate_tool

3. Restore to the original

benign app while keeping the

AOT lookup hash unchanged

4. The AOT file is reused because

the AOT lookup hash is the same
/Users/ffri/a.out

5. Poisoned AOT file is

used for execution 😎

/Users/ffri/a.out /var/db/oah/../a.out.aot

Benign app

But how?

Modifying the file updates

the timestamps

#BHASIA @BlackHatEvents

Timestomping after modifying
We can restore mtime and crtime after modifying the file contents

We can change timestamps with SetFile command (or touch command)

However, we cannot restore ctime with this method

• Because modifying mtime and crtime always updates ctime

#BHASIA @BlackHatEvents

Writing to a file via mmap
According to the older UNIX specification of mmap()

“may be marked for update” drew my attention

This phrase has been changed to “shall be marked” in the latest version

Does writing to a file via mmap() without msync() update ctime and mtime on macOS?

The st_ctime and st_mtime fields of a file that is mapped with MAP_SHARED

and PROT_WRITE, will be marked for update at some point in the interval

between a write reference to the mapped region and the next call to msync() with

MS_ASYNC or MS_SYNC for that portion of the file by any process. If there is

no such call, these fields may be marked for update at any time after a write

reference if the underlying file is modified as a result.

https://pubs.opengroup.org/onlinepubs/7908799/xsh/mmap.html

https://pubs.opengroup.org/onlinepubs/9699919799/functions/mmap.html

https://apenwarr.ca/log/20181113

https://pubs.opengroup.org/onlinepubs/7908799/xsh/mmap.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/mmap.html
https://apenwarr.ca/log/20181113

#BHASIA @BlackHatEvents

Experiment: writing to a file via mmap

Write to the file via mmap() and call munmap() (without calling msync())

Write to the file via mmap() and call msync() and munmap()

Create a file and write some contents

#BHASIA @BlackHatEvents

Result: writing to a file via mmap

mtime and ctime are not updated
although contents are changed!

mtime and ctime are updated when

msync is called before munmap

Summary: we can change file contents while keeping

timestamps unchanged via mmap() if we don’t call msync()

#BHASIA @BlackHatEvents

AOT Poisoning

Steps to inject code

1. Inject shellcode into a benign app

2. Translate the target with translate_tool

3. Restore it to the original benign executable via mmap() without calling msync()

4. Poisoned AOT file is used, and injected code is executed!

#BHASIA @BlackHatEvents

Limitation

Cannot be applied to a signed x64 executable😥

There are two reasons why this technique cannot be applied to a signed executable

1) In-place modification of a signed executable causes the program to crash when running

2) oahd does not accept an x64 executable with an invalid code signature

#BHASIA @BlackHatEvents

Why cannot be applied to signed executables?

1) In-place modification of a signed executable causes the crash when running

This mitigation is introduced in Apple Silicon Mac

Note that this occurs even if you restore the executable to a valid signed one on disk

• For more details, see the Apple’s documentation and the Developer Forums post

To avoid this crash, we need to create a copy of the target executable

• But this always updates the timestamps, which means the change of AOT lookup hash…

Specifically, code signing information is hung off the vnode within the kernel, and

modifying the file behind that cache will cause problems. You need a new vnode, which

means a new file, that is a new inode.

- Quinn “The Eskimo!” @ Developer Technical Support @ Apple

https://developer.apple.com/documentation/security/updating_mac_software?language=objc
https://developer.apple.com/forums/thread/669145

#BHASIA @BlackHatEvents

Why cannot be applied to signed executables?

2) oahd does not accept an x64 executable with an invalid code signature

Cannot create an AOT file for a signed x64 executable containing our payload

translate_tool exits abnormally

test.out has an invalid

code signature

#BHASIA @BlackHatEvents

How Apple fixed this issue?
Fixed in Big Sur 11.6 & Monterey 12.0.1

Writing to a file via mmap() & munmap() without calling msync() updates ctime

• We cannot modify file contents while keeping AOT lookup hash unchanged

ctime is updated

Apple updated APFS

to fix this issue

https://support.apple.com/en-us/HT212804

https://support.apple.com/en-us/HT212804

#BHASIA @BlackHatEvents

Is the Apple’s fix enough?
Apple patched APFS, but is it enough?

They did not change the way to calculate the AOT lookup hash

The way to calculate AOT lookup hash is the

same as the previous version of macOS

-> Apple’s fix relies on the APFS’s fix

#BHASIA @BlackHatEvents

Filesystems other than APFS
macOS supports various filesystems other than APFS (e.g., HFS+, FAT32, exFAT, …)

We can create a dmg file with hdiutil command and mount it

• Can specify the filesystem of the dmg image by “fs” option

If we use the other filesystem, we can bypass Apple’s fix😎

We can still perform AOT poisoning by downgrading the filesystem

#BHASIA @BlackHatEvents

Timestamps of other filesystems
Timestamps of FAT32 mtime ctime crtime

https://www.sans.org/white-papers/36842/

ctime is not defined for FAT32!

Therefore, timestomping after the file modification

does not change the AOT lookup hash

N/A

https://www.sans.org/white-papers/36842/

#BHASIA @BlackHatEvents

How to inject code into signed executable?

We need a code injection applicable to a signed executable

If we apply to a signed executable, we can abuse it for hijacking the trust

There are two reasons why this technique cannot be applied to signed executables

1) In-place modification of signed executable causes the crash when running

2) oahd does not accept an x64 executable with invalid code signature

We must bypass these two restrictions

#BHASIA @BlackHatEvents

How to inject code into signed executable?

We need a code injection applicable to a signed executable

If we apply to a signed executable, we can abuse it for hijacking the trust

There are two reasons why this technique cannot be applied to signed executables

1) In-place modification of signed executable causes the crash when running

2) oahd does not accept an x64 executable with invalid code signature

We must bypass these two restrictions
This restriction has already been

bypassed because we no longer need

in-place modification.

#BHASIA @BlackHatEvents

How to inject code into signed executable?

We need a code injection applicable to a signed executable

If we apply to a signed executable, we can abuse it for hijacking the trust

There are two reasons why this technique cannot be applied to signed executables

1) In-place modification of signed executable causes the crash when running

2) oahd does not accept an x64 executable with invalid code signature

We must bypass these two restrictionsThis restriction can be bypassed by re-

signing with an ad-hoc signature

#BHASIA @BlackHatEvents

How to inject code into signed executable?
oahd accepts an executable with an adhoc signature and translates it

However, codesign command changes the Mach-O header

So, simply re-signing with codesign command changes the AOT lookup hash

-> I developed a new tool to sign with an ad-hoc signature while keeping the Mach-O header unchanged

adhoc signed

translated successfully

#BHASIA @BlackHatEvents

How to inject code into signed executable?
Steps to sign with an ad-hoc signature while keeping the Mach-O header unchanged

1. Create a copy of an x64 executable and remove the existing signature

2. Sign it with an adhoc signature and extract the signature in it

3. Inject the extracted signature into the original x64 executable

4. Tweak the code directory in the adhoc signature to make it a valid one

Please refer to *OS Internals

Volume 3 for code signature format.

Mach-O
Code directory

Code signature

Code directory

codeHash[1]

codeHash[0]
0x0

Mach-O header
0x1000

0x2000

SHA-256

SHA-256

Code section0x3000

SHA-256 codeHash[2]

Code directory of the

ad-hoc signature

can be changed

because it does not

contain CMS.

#BHASIA @BlackHatEvents

True AOT poisoning

Steps to inject code

1. Create a FAT32 dmg and mount it

2. Copy an x64 executable to the mounted point

3. Inject shellcode into it and re-sign it with an ad-hoc signature

4. Run translate_tool to create an AOT file

5. Restore the target executable to the original executable having the valid code signature

6. Restore the timestamps

7. Run the executable

8. Injected code is executed!😎

#BHASIA @BlackHatEvents

Exploitation

#BHASIA @BlackHatEvents

TCC bypass
Transparency, Consent, and Control (TCC)

Prevents an attacker from accessing some sensitive information without user consent

• Sensitive information includes contacts, camera, screen, microphone, emails, …

• For more details, see excellent TCC research by Csaba & Wojciech at BHUSA 2021 and BHEU 2022

https://www.blackhat.com/us-21/briefings/schedule/#-ways-to-bypass-your-macos-privacy-mechanisms-23133
https://www.blackhat.com/eu-22/briefings/schedule/#knockout-win-against-tcc----new-ways-to-bypass-your-macos-privacy-mechanisms-29272

#BHASIA @BlackHatEvents

TCC bypass
TCC bypass can be achieved by code injection

E.g., CVE-2020-24259 in Signal.app

• Typically, microphone access is granted to Signal.app

• Old Signal.app had vulnerable allow-dyld-environment-variables and disable-library-validation entitlements

• So, we can easily execute code in the context of Signal.app by injecting dylib with DYLD_INSERT_LIBRARIES

• Similar issues were present on other applications (e.g., Zoom*)

This exploit does not work if the library validation is enabled

• Because the library validation blocks loading of an unsigned dylib

But code injection by AOT poisoning can be applied to any x64 executable

• Even if the library validation is enabled!

• Recent macOS apps are built as FAT, so even if a user uses the app natively, an attacker can still use this technique

* https://objective-see.org/blog/blog_0x56.html

https://objective-see.org/blog/blog_0x56.html

#BHASIA @BlackHatEvents

#BHASIA @BlackHatEvents

Hiding malicious payload in SIP-protected location

If an attacker uses this technique to execute malware, IR process becomes harder

Because the original x64 executable does not contain any malicious payload

• The code to be executed is in the SIP-protected /var/db/oah/*/* directory

• Cannot access these poisoned AOT files without disabling SIP

/var/db/oah/*/*

NotMalwareX64

SIP protected location

NotMalwareX64.aot

Used for execution

Hmm, I cannot find

any suspicious

indicators. Seems

benign.

No AV software

scans this file

because it does

not have SIP-

related

entitlements

#BHASIA @BlackHatEvents

Anti-Debugging
AOT-poisoned x64 executable cannot be debugged with LLDB

When analyzing it, we cannot perform dynamic analysis with LLDB!

• This makes a dynamic analysis harder

The AOT file of

ls is poisoned

LLDB cannot start debugging

the AOT-poisoned executable

#BHASIA @BlackHatEvents

The Apple’s fixes
Fixed at macOS Ventura 13.0 & Monterey 12.6 & Big Sur 11.7

Apple assigned CVE-2022-42789

Eligible for a generous bounty😀

https://support.apple.com/en-us/HT213488

https://support.apple.com/en-us/HT213488

#BHASIA @BlackHatEvents

Analyzing the Apple’s fixes
We cannot execute an AOT-poisoned x64 executable anymore

Rosetta 2 checks code signing status by calling fcntl_nocancel

Kernel Log says “supplemental signature for

file does not match any attached cdhash”

If fcntl_nocancel returns EPERM,

Rosetta 2 throws the exception.

F_ADDFILESUPPL command is used

#BHASIA @BlackHatEvents

About the Apple’s fixes

Apple’s fixes rely on checking the dynamic code signing status (see the Appendix)

-> This means that we can still inject code into non-signed executables

So, TCC bypass is fixed, but a local attacker can still perform other exploitations

• Hiding malicious payload in SIP protected location

• Anti-debugging

#BHASIA @BlackHatEvents

Supplemental signature & linkage hash
Apple introduced a mitigation to code injection modifying AOT file before I reported

This is performed by adding supplemental signature to the AOT file of a signed x64 executable

• Supplemental signature contains the cdhash of the original executable named linkage hash

• Kernel (at ubc_cs_blob_add_supplement()) checks linkage hash matches cdhash of the original x64 executable

• If not matched, AOT file is not used for the execution

This mitigation has already been introduced in the first Big Sur!

• So, unlike Windows, Apple limited the code injection directly modifying AOT file

However, AOT poisoning bypassed this mitigation

• For more details, see the Appendix

…

CodeDirectory struct contains

members related to linkage

hash from version 0x20600 https://github.com/apple-oss-

distributions/xnu/blob/5c2921b07a2480ab43ec66f5b

9e41cb872bc554f/osfmk/kern/cs_blobs.h#L209

https://github.com/apple-oss-distributions/xnu/blob/5c2921b07a2480ab43ec66f5b9e41cb872bc554f/osfmk/kern/cs_blobs.h#L209
https://github.com/apple-oss-distributions/xnu/blob/5c2921b07a2480ab43ec66f5b9e41cb872bc554f/osfmk/kern/cs_blobs.h#L209
https://github.com/apple-oss-distributions/xnu/blob/5c2921b07a2480ab43ec66f5b9e41cb872bc554f/osfmk/kern/cs_blobs.h#L209

#BHASIA @BlackHatEvents

A similar code injection on Arm-based Windows

#BHASIA @BlackHatEvents

AOT lookup hash for Arm-based Windows?

Arm-based Windows also reuses the translation result like Rosetta 2

When we run the same application twice, existing XTA cache files are reused

-> Are there any hashes corresponding to the AOT lookup hash on Windows?

To find the cache file, the XtaCache service should first open the executable

image, map it, and calculate its hashes. Two hashes are generated based

on the executable image path and its internal binary data.

- Windows Internals, Part2 7th edition

#BHASIA @BlackHatEvents

Module header/path hashes

ADOBEARMHELPER.EXE.50B4313C4D8BC729AEA5FE0DECBF4580.6A21A56F7C6F1DFE1683646B024EE7E2.x86
.mp.2.jc
• module header hash

• module path hash

• cache version

Only XtaCache service and

Administrators group users

can access this directory

But how are these hashes calculated?

#BHASIA @BlackHatEvents

How to calculate module path hash?

Module path hash is

calculated by the NT

device path name of the

target x86/x64 executable

#BHASIA @BlackHatEvents

How to calculate module header hash?

Module header hash is calculated

from the following information:

• DOS header

• NT headers (not including

ImageBase)

• LastWriteTime (i.e., mtime)

#BHASIA @BlackHatEvents

How to calculate module header hash?

Module header hash is calculated

from the following information:

• DOS header

• NT headers (not including

ImageBase)

• LastWriteTime (i.e., mtime)

Only mtime is used for hashing😅

We can easily cause the hash collision for the module

header hash by timestomping mtime

#BHASIA @BlackHatEvents

translate_tool for Arm-based Windows?

There is no translate_tool on Arm-based Windows😥

We cannot create an XTA cache file without running an x86/x64 executable

-> To address this issue, XtacTranslateTool is created

• This tool enables us to create an XTA cache file without running

• Does not require admin privileges

• For more details, see the Appendix

#BHASIA @BlackHatEvents

XTA cache poisoning

Steps to inject code

1. Inject shellcode into the target executable

2. Create an XTA cache file using XtacTranslateTool

3. Restore the target executable to the original one

4. Restore the LastWriteTime

5. Run the target executable

6. Poisoned XTA cache file is used for the execution😎

Unlike macOS, XtaCache service happily accepts an executable with an invalid code signature

• So, we can easily apply this technique to a signed executable

#BHASIA @BlackHatEvents

Exploitation: stealth PE backdooring
Backdooring PE files is used to achieve persistence

We can easily detect backdoored PE by inspecting it

• Because this method typically adds new section and modifies the entrypoint of the target PE file

PE backdooring by XTA cache poisoning does not have such downsides

• Backdoored PE file is the same as the original one, so we cannot see any suspicious indicators in this

https://www.ired.team/offensive-security/code-injection-process-
injection/backdooring-portable-executables-pe-with-shellcode#final-note

https://www.ired.team/offensive-security/code-injection-process-injection/backdooring-portable-executables-pe-with-shellcode#final-note
https://www.ired.team/offensive-security/code-injection-process-injection/backdooring-portable-executables-pe-with-shellcode#final-note

#BHASIA @BlackHatEvents

Exploitation: user-assisted EoP
UAC elevation by hijacking the trust of software

UAC elevation prompt shows the origin of the target executable

• If it has a valid code signature, it shows “Verified publisher,” but if not, it shows “Publisher: Unknown” with the yellow stripe

If an attacker performs code injection with XTA cache poisoning, the code signature remains valid

• So, chances are good that a user unintentionally executes it with admin privileges

• Installer is a good target because it is typically executed with admin privileges and has a valid code signature

Publisher: Unknown
Verified publisher:

Adobe Inc.

#BHASIA @BlackHatEvents

#BHASIA @BlackHatEvents

Microsoft response

This issue does not meet the MSRC bar for an immediate security update

- MSRC

#BHASIA @BlackHatEvents

Is fixing this issue simple?

Naïve approach: Hashing also ChangeTime (ctime) along with LastWriteTime (mtime)*

However, this is not enough!

Because we can use the same filesystem downgrade trick on Windows

• Mount FAT32 image and copy the target executable to it, then we can easily change the timestamps

But the filesystem downgrade trick is not required on Windows even if ctime is hashed

*Here we consider $STANDARD_INFORMATION timestamps and

$FILE_NAME timestamps in a directory index, which can be

accessed from NtQueryInformationFile and NtQueryDirectoryFile(Ex)

#BHASIA @BlackHatEvents

Changing ctime and mtime is easy on Windows

NtSetInformationFile can change ctime and mtime simultaneously

FILE_BASIC_INFORMATION contains ctime,

mtime, crtime, and atime

Can change all timestamps (including ctime) to

the values specified by FILE_BASIC_INFORMATION

#BHASIA @BlackHatEvents

Changing ctime and mtime is easy on Windows

NtSetInformationFile can change ctime and mtime simultaneously

FILE_BASIC_INFORMATION contains ctime,

mtime, crtime, and atime

Can change all timestamps (including ctime) to

the values specified by FILE_BASIC_INFORMATION

Even if ctime is hashed, we can still cause the hash

collision for module header hash

-> Hashing ctime is not the ultimate fix to prevent

XTA cache poisoning

#BHASIA @BlackHatEvents

Summary & key takeaways

#BHASIA @BlackHatEvents

Summary
Rosetta 2 and Windows x86/x64 emulation reuses binary translation cache files to reduce

the amount of binary translation

These compatibility layers use the dedicated hashes to check whether the specified

binary was previously translated

These hashes are calculated from timestamps, the header of the target file, the file path, etc.

New code injection techniques (AOT poisoning & XTA cache poisoning) are proposed

These are achieved by causing the collision of the dedicated hash

The details of these techniques and how to exploit them are covered

#BHASIA @BlackHatEvents

Black Hat Sound Bytes

For red team

New code injection techniques (AOT poisoning and XTA cache poisoning) with PoC code

• You can find the PoC code in the following links and can test these on your own environment

• https://github.com/FFRI/XtacPoisoning

• https://github.com/FFRI/AotPoisoning

For security researchers

There are few studies on these compatibility layers and offensive tooling using these

• I hope to see more vulnerability research on this topic

• I hope this talk will be the starting point of your research

https://github.com/FFRI/XtacPoisoning
https://github.com/FFRI/AotPoisoning

#BHASIA @BlackHatEvents

Black Hat Sound Bytes

For OS developers

Failure to check the identity of a file correctly causes the security vulnerability to enable code injection

• Determining the identity of a file is difficult

• Implementing this correctly needs more consideration

Everyone

Be careful of these threats!

• Since Arm-based laptops are becoming more popular, an attacker will exploit these

#BHASIA @BlackHatEvents

Thank you

Any questions and comments to

Twitter DM: https://twitter.com/ffri_research

e-mail: research-feedback@ffri.jp

#BHASIA @BlackHatEvents

Appendix

#BHASIA @BlackHatEvents

Exploitations other than TCC bypass?

#BHASIA @BlackHatEvents

Limitations of AOT poisoning

Dynamic code signing becomes invalid

Therefore, this method cannot be used for bypassing dynamic code signing check

• Unfortunately, if we try to use this technique to Apple-signed executable, we cannot fully obtain its entitlements

• AMFI did a great job

#BHASIA @BlackHatEvents

Why did TCC bypass work?

Latest tccd checks the dynamic code signature for verifying its identity

CVE-2021-30972 – TCC bypass @ Black Hat ASIA 2022

• Its root cause is that tccd does not check the dynamic code signature

• tccd is now fixed to check the dynamic code signature

However, AOT poisoning can be used for bypassing TCC although the dynamic code signature

becomes invalid🤔

I did not analyze its root cause, but tccd might still contain “weak” code signature verification

https://www.blackhat.com/asia-22/briefings/schedule/#macos-vulnerabilities-hiding-in-plain-sight-26073

#BHASIA @BlackHatEvents

How Apple fixed AOT poisoning?

#BHASIA @BlackHatEvents

Analyzing the Apple’s fixes
Rosetta 2 stops to execute an AOT-poisoned x64 executable

Rosetta 2 checks code signing status by calling fcntl_nocancel

Kernel Log says “supplemental

signature for file does not match

any attached cdhash”

If fcntl_nocancel returns EPERM,

Rosetta 2 throws the exception.

F_ADDFILESUPPL command is used

#BHASIA @BlackHatEvents

Analyzing the Apple’s fixes: Dive into XNU
F_ADDFILESUPPL command of fcntl_nocancel

Its implementation resides in sys_fcntl_nocancel (kern_descript.c)

…

Load a code signing blob of an AOT

file into Unified Buffer Cache (UBC)

The code signing blob is passed to the

ubc_cs_blob_add_supplement() function

https://github.com/apple-oss-distributions/xnu/blob/5c2921b07a2480ab43ec66f5b9e41cb872bc554f/bsd/kern/kern_descrip.c#L4119-L4144

#BHASIA @BlackHatEvents

Analyzing the Apple’s fixes: Dive into XNU
Patches of ubc_cs_blob_add_supplement()

The validity of dynamic code

signing status is checked.

EPERM is returned when the

dynamic code signing is invalid

https://github.com/apple-oss-distributions/xnu/compare/e7776783b89a353188416a9a346c6cdb4928faad...5c2921b07a2480ab43ec66f5b9e41cb872bc554f

#BHASIA @BlackHatEvents

Supplemental signature & linkage hash

#BHASIA @BlackHatEvents

Supplemental signature & linkage hash
An AOT file for a signed x64 executable has supplemental signature

Supplemental signature has linkage hash, which is the cdhash of the original x64 executable

• codesign command does not show the linkage hash

• Tool to show linkage hash is available at https://github.com/FFRI/AotPoisoning

Show cdhash of x64 app

Show linkage hash of the

supplement signature of

AOT filecdhash of the original

x64 app matches

linkage hash

https://github.com/FFRI/AotPoisoning

#BHASIA @BlackHatEvents

Supplemental signature & linkage hash: checking

ubc_cs_blob_add_supplement() checks linkage hash matches cdhash of x64 executable

This check exists at least in the initial release of macOS Big Sur

Why is AOT poisoning not mitigated by this check?

Check cdhash ==

linkage hash

If cdhash != linkage

hash

ubc_cs_blob_add_supplement
fails

https://github.com/apple-oss-

distributions/xnu/blob/bb611c8fecc755a0d8e56e2fa51513527c5b7a0e/bsd/kern/ubc_subr.c#L3878-L3890

https://github.com/apple-oss-distributions/xnu/blob/bb611c8fecc755a0d8e56e2fa51513527c5b7a0e/bsd/kern/ubc_subr.c#L3878-L3890
https://github.com/apple-oss-distributions/xnu/blob/bb611c8fecc755a0d8e56e2fa51513527c5b7a0e/bsd/kern/ubc_subr.c#L3878-L3890

#BHASIA @BlackHatEvents

Supplemental signature & linkage hash: checking
Multiple code signing blobs

are attached to the single

vnode of the x64 executable.

In this case, there are two

code signing blobs for valid

x64 executable and code-

injected x64 executable.

If one of the blobs contains the

valid cdhash, this check passes.

-> Therefore, linkage hash does

not prevent from AOT poisoning

#BHASIA @BlackHatEvents

XtacTranslateTool

#BHASIA @BlackHatEvents

How XTA cache files are created?
Communication between xtajit and XtaCache is achieved using NtAlpcSendWaitReceivePort

… BTCpuNotifyMapViewOfSection is called every time a module is loaded (since

NtMapViewOfSection is called every time a module is loaded). Eventually it passes a module

file handle to NtAlpcSendWaitReceivePort, which sends the message to the compiler, xtac.exe.

- Teardown: Windows 10 on ARM - x86 Emulation

XtaCache.exe xtac.exe

x86 emulation process

xtajit.dll

test.dll

…

Pass a module file

handle & share

execution paths

x86 module is

newly loaded

Pass arguments for

xtac.exe
%SystemRoot%\XtaCache

TEST.DLL…x86.mp1.jc

…

Translate and

create a new

cache file

#BHASIA @BlackHatEvents

How XTA cache files are created?
Communication between xtajit and XtaCache is achieved using NtAlpcSendWaitReceivePort

… BTCpuNotifyMapViewOfSection is called every time a module is loaded (since

NtMapViewOfSection is called every time a module is loaded). Eventually it passes a module

file handle to NtAlpcSendWaitReceivePort, which sends the message to the compiler, xtac.exe.

- Teardown: Windows 10 on ARM - x86 Emulation

XtaCache.exe xtac.exe

x86 emulation process

xtajit.dll

test.dll

…

x86 module is

newly loaded

Pass arguments for

xtac.exe
%SystemRoot%\XtaCache

TEST.DLL…x86.mp1.jc

…

Translate and

create a new

cache file

If we can “emulate” IPC between xtajit.dll

and XtaCache.exe, we can create an XTA

cache file without executing it

Pass a module file

handle & share

execution paths

#BHASIA @BlackHatEvents

Trace Buffer
xtajit/xtajit64 has “Trace Buffer” shared between x86/x64 emu process and XtaCache

Used for sending hints about which x86/x64 code is emulated or already present in XTA cache files*

• xtac.exe compiler create XTA cache files based on the valid entries in this buffer

Trace buffer contains the list of pairs, which consist of module ids and RVAs

• This buffer can be easily modified

We can control which code in which module should be translated by modifying the trace buffer

* Windows Internals, Part2 7th edition

Trace Buffer is updated at

#JccClidnetAddTrace

#BHASIA @BlackHatEvents

How to find Trace Buffer?
Since Trace Buffer is dynamically allocated, its address is determined at runtime

To find the Trace Buffer, we “mark” the Trace Buffer by loading “MarkerLibrary”

• MarkerLibrary contains various branch instructions

• After this dll is loaded, Trace Buffer is filled with RVAs of these branch instructions

• These values are unique to this dll, so by scanning these values, we can find the Trace Buffer

Example of MarkerLibrary

#BHASIA @BlackHatEvents

Steps to translate an x86/x64 executable

1. Load target executable with LoadLibraryExA*

*To avoid running the DllEntry, DONT_RESOLVE_DLL_REFERENCES flag must be specified

2. Drop MarkerLibrary

3. Load the MarkerLibrary to mark the Trace Buffer

4. Find the Trace Buffer from the mark recorded in step 3

5. Change module ids and RVAs of the Trace Buffer to the id and RVAs of the module loaded at step 1

6. XtaCache file is created

Code is available on GitHub (https://github.com/FFRI/XtacPoisoning)

https://github.com/FFRI/XtacPoisoning

#BHASIA @BlackHatEvents

Benefits of XTA cache poisoning

#BHASIA @BlackHatEvents

Benefits of XTA cache poisoning
Can be applied to apps not having relative path DLL load hijacking vulnerability

This type of EoP is typically performed by hijacking vulnerable DLL loading

• But since XTA cache poisoning can be applied to any x86/x64 executable, we do not need to find such vulnerable apps

• Note that we basically cannot use other code injection techniques calling CreateProcess

• Because they fail with ERROR_ELEVATION_REQUIRED when the target app requires elevation

Can be used even if ValidateAdminCodeSignatures is enabled

ValidateAdminCodeSignatures: “Only elevate executables that are signed and validated policy setting”

• So, we cannot elevate a non-signed executable (or executable with invalid signature) if this setting is enabled

• But XTA cache poisoning can bypass this restriction!

https://learn.microsoft.com/ja-jp/archive/blogs/winsdk/dealing-with-administrator-and-standard-users-context

https://learn.microsoft.com/en-us/windows/security/identity-protection/user-account-control/user-

account-control-group-policy-and-registry-key-settings

https://learn.microsoft.com/ja-jp/archive/blogs/winsdk/dealing-with-administrator-and-standard-users-context
https://learn.microsoft.com/en-us/windows/security/identity-protection/user-account-control/user-account-control-group-policy-and-registry-key-settings
https://learn.microsoft.com/en-us/windows/security/identity-protection/user-account-control/user-account-control-group-policy-and-registry-key-settings

#BHASIA @BlackHatEvents

References - related research on Rosetta 2

Project Champollion - by me

https://github.com/FFRI/ProjectChampollion

Why is Rosetta 2 fast? - @dougallj

https://dougallj.wordpress.com/2022/11/09/why-is-rosetta-2-fast/

TSOEnabler - @_saagarjha

https://github.com/saagarjha/TSOEnabler

https://github.com/FFRI/ProjectChampollion
https://dougallj.wordpress.com/2022/11/09/why-is-rosetta-2-fast/
https://github.com/saagarjha/TSOEnabler

#BHASIA @BlackHatEvents

References - related research on macOS exploits
Shield - An app to protect against process injection on macOS - @theevilbit

https://theevilbit.github.io/shield/

Process injection: breaking all macOS security layers with a single vulnerability - @xnyhps

https://sector7.computest.nl/post/2022-08-process-injection-breaking-all-macos-security-layers-with-a-single-vulnerability/

20+ Ways to Bypass Your macOS Privacy Mechanisms - @theevilbit and @_r3ggi

https://www.blackhat.com/us-21/briefings/schedule/index.html#-ways-to-bypass-your-macos-privacy-mechanisms-23133

Knockout Win Against TCC - 20+ NEW Ways to Bypass Your MacOS Privacy Mechanisms -

@theevilbit and @_r3ggi

https://www.blackhat.com/eu-22/briefings/schedule/#knockout-win-against-tcc----new-ways-to-bypass-your-macos-privacy-

mechanisms-29272

https://theevilbit.github.io/shield/
https://sector7.computest.nl/post/2022-08-process-injection-breaking-all-macos-security-layers-with-a-single-vulnerability/
https://www.blackhat.com/us-21/briefings/schedule/index.html#-ways-to-bypass-your-macos-privacy-mechanisms-23133
https://www.blackhat.com/eu-22/briefings/schedule/#knockout-win-against-tcc----new-ways-to-bypass-your-macos-privacy-mechanisms-29272
https://www.blackhat.com/eu-22/briefings/schedule/#knockout-win-against-tcc----new-ways-to-bypass-your-macos-privacy-mechanisms-29272

#BHASIA @BlackHatEvents

References - related research on Arm-based Windows

Teardown: Windows 10 on ARM – x86 Emulation - Cylance Research Team

https://blogs.blackberry.com/en/2019/09/teardown-windows-10-on-arm-x86-emulation

WoW64 internals …re-discovering Heaven’s Gate on ARM - @PetrBenes

https://wbenny.github.io/2018/11/04/wow64-internals.html

Jack-in-the-Cache: A New Code injection Technique through Modifying X86-to-ARM Translation

Cache - by me

https://www.blackhat.com/eu-20/briefings/schedule/#jack-in-the-cache-a-new-code-injection-technique-through-modifying-x-

to-arm-translation-cache-21324

Appearances are deceiving: Novel offensive techniques in Windows 10/11 on ARM - by me

https://www.ffri.jp/assets/files/research/research_papers/Koh_Nakagawa_Appearances_are_deceiving_English.pdf

https://blogs.blackberry.com/en/2019/09/teardown-windows-10-on-arm-x86-emulation
https://wbenny.github.io/2018/11/04/wow64-internals.html
https://www.blackhat.com/eu-20/briefings/schedule/#jack-in-the-cache-a-new-code-injection-technique-through-modifying-x-to-arm-translation-cache-21324
https://www.blackhat.com/eu-20/briefings/schedule/#jack-in-the-cache-a-new-code-injection-technique-through-modifying-x-to-arm-translation-cache-21324
https://www.ffri.jp/assets/files/research/research_papers/Koh_Nakagawa_Appearances_are_deceiving_English.pdf

	Title
	スライド 1

	Agenda
	スライド 2: $ whoami – Koh M. Nakagawa (@tsunek0h)
	スライド 3: Agenda

	Introduction
	スライド 4: Arm-based laptops are becoming popular
	スライド 5: Translation/emulation technologies
	スライド 6: Binary translation result is cached
	スライド 7: My previous research at Black Hat EU 2020
	スライド 8: My previous research at Black Hat EU 2020
	スライド 9: Research motivation
	スライド 10: Introduction to macOS security model
	スライド 11: Introduction to macOS security model
	スライド 12: Code injection on macOS
	スライド 13: Code injection on macOS

	Rosetta 2 internals
	スライド 14: Rosetta 2 internals & a new code injection
	スライド 15: Installing Rosetta 2
	スライド 16: Quick look at Rosetta 2
	スライド 17: AOT file
	スライド 18: Rosetta 2 components
	スライド 19: Simplified execution flow
	スライド 20: Simplified execution flow
	スライド 21: translate_tool
	スライド 22: AOT files are cached for reuse
	スライド 23: How to check the binary was previously translated?
	スライド 24: How does Rosetta 2 calculate AOT lookup hash?
	スライド 25: How does Rosetta 2 calculate AOT lookup hash?
	スライド 26: How does Rosetta 2 calculate AOT lookup hash?

	AOT poisoning by APFS timestamp flaw
	スライド 27: A plan for code injection
	スライド 28: A plan for code injection
	スライド 29: Timestomping after modifying
	スライド 30: Writing to a file via mmap
	スライド 31: Experiment: writing to a file via mmap
	スライド 32: Result: writing to a file via mmap
	スライド 33: AOT Poisoning
	スライド 34
	スライド 35: Limitation
	スライド 36: Why cannot be applied to signed executables?
	スライド 37: Why cannot be applied to signed executables?
	スライド 38: How Apple fixed this issue?

	True AOT poisoning
	スライド 39: Is the Apple’s fix enough?
	スライド 40: Filesystems other than APFS
	スライド 41: Timestamps of other filesystems
	スライド 42: How to inject code into signed executable?
	スライド 43: How to inject code into signed executable?
	スライド 44: How to inject code into signed executable?
	スライド 45: How to inject code into signed executable?
	スライド 46: How to inject code into signed executable?
	スライド 47: True AOT poisoning

	Exploitation
	スライド 48: Exploitation
	スライド 49: TCC bypass
	スライド 50: TCC bypass
	スライド 51
	スライド 52: Hiding malicious payload in SIP-protected location
	スライド 53: Anti-Debugging

	Analyzing Apple's fixes
	スライド 54: The Apple’s fixes
	スライド 55: Analyzing the Apple’s fixes
	スライド 56: About the Apple’s fixes
	スライド 57: Supplemental signature & linkage hash

	XTA cache poisoning
	スライド 58: A similar code injection on Arm-based Windows
	スライド 59: AOT lookup hash for Arm-based Windows?
	スライド 60: Module header/path hashes
	スライド 61: How to calculate module path hash?
	スライド 62: How to calculate module header hash?
	スライド 63: How to calculate module header hash?
	スライド 64: translate_tool for Arm-based Windows?
	スライド 65: XTA cache poisoning

	Exploitation on Arm-based Windows
	スライド 66: Exploitation: stealth PE backdooring
	スライド 67: Exploitation: user-assisted EoP
	スライド 68
	スライド 69: Microsoft response
	スライド 70: Is fixing this issue simple?
	スライド 71: Changing ctime and mtime is easy on Windows
	スライド 72: Changing ctime and mtime is easy on Windows

	Summary
	スライド 73: Summary & key takeaways
	スライド 74: Summary
	スライド 75: Black Hat Sound Bytes
	スライド 76: Black Hat Sound Bytes
	スライド 77: Thank you

	Appendix
	スライド 78: Appendix
	スライド 79: Exploitations other than TCC bypass?
	スライド 80: Limitations of AOT poisoning
	スライド 81: Why did TCC bypass work?
	スライド 82: How Apple fixed AOT poisoning?
	スライド 83: Analyzing the Apple’s fixes
	スライド 84: Analyzing the Apple’s fixes: Dive into XNU
	スライド 85: Analyzing the Apple’s fixes: Dive into XNU
	スライド 86: Supplemental signature & linkage hash
	スライド 87: Supplemental signature & linkage hash
	スライド 88: Supplemental signature & linkage hash: checking
	スライド 89: Supplemental signature & linkage hash: checking
	スライド 90: XtacTranslateTool
	スライド 91: How XTA cache files are created?
	スライド 92: How XTA cache files are created?
	スライド 93: Trace Buffer
	スライド 94: How to find Trace Buffer?
	スライド 95: Steps to translate an x86/x64 executable
	スライド 96: Benefits of XTA cache poisoning
	スライド 97: Benefits of XTA cache poisoning

	References
	スライド 98: References - related research on Rosetta 2
	スライド 99: References - related research on macOS exploits
	スライド 100: References - related research on Arm-based Windows

