blgc’zk hat

ASIA =2

MAY 11-12
BRIEFINGS

Dirty Bin Cache: A New Code Injection Poisoning
Binary Translation Cache

Koh M. Nakagawa at FFRI Security, Inc.

blg?:k hat

ASIA 2023

$ whoami - Koh M. Nakagawa (@tsunekOh)

Security Researcher at FFRI Security, Inc.

* Vulnerability research on Arm-based Windows
* Recently started macOS security

* Found multiple vulnerabillities of macOS (TCC/SIP/Gatekeeper bypass)
« Gave talks at BHEU 2020 Briefings and CODE BLUE 2021

O CODE BLUE [
bl aCK h at because security matters.
cuRoPe =2o=0 2821 eToKYD

https://github.com/kohnakagawa

O

black hat

ASIA 2023

Agenda

 Introduction

* Rosetta 2 internals

« Code injection on macOS: AOT poisoning

« Exploitation on macOS

« A similar code injection on Arm-based Windows: XTA cache poisoning
* Exploitation on Arm-based Windows

« Summary & key takeaways

O

black hat

ASIA 2023

Arm-based laptops are becoming popular

Forecast: ARM CPUs to Reach 25% of Laptop Market
Share by 2027

ARM-based laptops are expected to gain share at Intel and AMD’s expense.

1% 13% M 15% M 15 > o W20, 5 Arm
AMDX
intel

2021 2022 2023 2024 2025 2026 2027

100%

80%

60%

40%

20%

0%

https://learn.microsoft.com/ja-jp/surface/surface-pro-9-overview
https://www.apple.com/jp/mac/
https://winbuzzer.com/2023/02/12/forecast-arm-cpus-to-reach-25-of-laptop-market-share-by-2027-xcxwbn/

O

black hat

ASIA 2023

Translation/emulation technologies

X86/x64 emulation

X86 Win32 emulation — internals Rosetta 2

= Kernel, drivers, angj all inbox ative Process u ‘ 5
i S e : Fast performance

code)

e aereas | | e | Translated at install time

using custom emulator from

Microsoft NN::T”S e = A CHPE D z " §
; : u ati DLLs oo b 2 -
+ Emitn les on W Dynamic translation for JITs

(windows on windows)

. WOW e fr i on 64 el — B Transparent to user

= Compiled Hybrid PE (CHPE)
DLLs are x86 DLLs with ARM64
code within them

Translating and emulating are time-consuming.
Therefore, reducing these is essential.

https://www.youtube.com/watch?v=GEZhD3J89ZE
https://learn.microsoft.com/ja-jp/events/build-2018/brk2438

O

black hat

ASIA 2023

Binary translation result is cached

How x86 emulation works on Arm (from MSDN)

x86 emulation works by compiling blocks of x86 instructions into Arm64 instructions with optimizations
to improve performance. A service caches these translated blocks of code to reduce the
overhead of instruction translation and allow for optimization when the code runs again. The
caches are produced for each module so that other apps can make use of them on first launch.

Rosetta 2 on a Mac with Apple silicon (from Apple Platform Security)
But the Rosetta runtime then sends an interprocess communication (IPC) guery to the Rosetta
system service, which asks whether there’s an AOT translation available for the current
executable image. If found, the Rosetta service provides a handle to that translation, and it’s
mapped into the process and executed.

https://learn.microsoft.com/en-us/windows/arm/apps-on-arm-x86-emulation
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf

O

black hat

ASIA 2023 T S\

My previous research at Black Hat EU 2020

A new code injection targeting Arm-based Windows
Named “XTA cache hijacking”

Jack-in-the=Cache:"A New Code injection Technique through-Madifying X86-to-ARM
Translation Cache

Ko Nakagawa | Research Engineer, FFRI Security, Inc.
Hiromitsu Oshiba | Research Engineer, FFRI Security, Inc.

Date: Wednesday, December 9 | 10:20am-10:50am
Format: 30-Minute Briefings
Track: . Reverse Engineering

Recently, the adoption of ARM processors for laptop computers is becoming popular due to its high energy efficiency. Windows 10 on ARM is

a new OS for such ARM-based computers. Several laptop computers with this OS have already been shipped; notably, the recent launch of
Microsoft Surface Pro X will be a driving force to facilitate the widespread use of Windows 10 on ARM.

https://www.blackhat.com/eu-20/briefings/schedule/index.html#jack-in-the-cache-a-new-code-injection-technique-through-modifying-x-to-arm-translation-cache-21324
https://www.blackhat.com/eu-20/briefings/schedule/index.html#jack-in-the-cache-a-new-code-injection-technique-through-modifying-x-to-arm-translation-cache-21324

O

black hat

ASIA 2023

My previous research at Black Hat EU 2020

Code injection by directly modifying X86-to-ARM (XTA) translation cache

An attacker can inject malicious code by modifying XTA translation cache
* It requires admin privileges, but it has a unique side effect that benefits an attacker

Flow of execution when XTA cache file is modified

@* Cache file directory '

Injects code into the cache file

ACCESSCHK EXE.95...mp.1jc /
2 search

X86_APP |nJected code 1JC

XtaCache.exe

o
1. notify x86 app load l 3. map to memory

B x86_app.exe | xtajitdil [X86_APP injected code .1jc [NNGND
l 4. transfer control if needed ' x86 process memory

https://www.blackhat.com/eu-20/briefings/schedule/index.html#jack-in-the-cache-a-new-code-injection-technique-through-modifying-x-to-arm-translation-cache-21324
https://www.blackhat.com/eu-20/briefings/schedule/index.html#jack-in-the-cache-a-new-code-injection-technique-through-modifying-x-to-arm-translation-cache-21324

O

black hat

ASIA 2023

Research motivation

Is there similar code injection for macOS Rosetta 27?

| started to study macOS security and
analyzed Rosetta 2 internals

O

black hat

ASIA 2023

Introduction to macOS security model

System Integrity Protection (SIP)

Restricts some dangerous operations such as
* Modifying system files

 Loading kernel extensions

* Debugging system processes

Root user cannot perform these operations

SIP is also known as rootless
-> Even root does not have full access to system, unlike traditional *NIX security model

O

black hat

ASIA 2023

Introduction to macOS security model

sh-3.2# csrutil status

System Integrity Protection status: enabled.

sh-3.2# rm -f /bin/ls Even root cannot
rm: /bin/ls: Operation not permitted delete system files

sh-3.2# 1ls Library/Mail
ls: Library/Mail: Operation not permitted Even root cannot

access some files

O

black hat

ASIA 2023

Code injection on macOS

the alpha and omega of macOS exploits is to run code in the context of other applications
- @theevilbit

https://theevilbit.github.io/shield/

O

black hat

ASIA 2023

Code injection on macOS

Why code injection?
Because macOS security mechanisms heavily rely on code signatures and its entitlements

* On macOS, entitlements grant various rights to the application

o E.g., an application needing to access some sensitive resources (camera, mic, messages, ...) should have proper entitlements
* If we can execute code in the context of other applications, we can hijack trusts of them

o S0, we can gain the rights of other applications by code injection
» Code injection is strictly prohibited on macOS

o E.g., hardened runtime is enabled for almost all applications

If we can find a new code Injection technique on macOS, we can
exploit it to bypass security & privacy mechanisms
-> | started to explore code injection abusing Rosetta 2

O

black hat

ASIA 2023

Rosetta 2 internals & a new code injection

O

black hat

ASIA 2023

Installing Rosetta 2

Rosetta 2 is not installed by default
When you run an app that needs Rosetta 2, popup is raised

Can also be installed by softwareupdate command like

* softwareupdate --install-rosetta --agree-to-license

Installing Rosetta 2 does not require root privileges
* If not installed, an attacker can install it manually

To open “App”, you need to install Rosetta. Do you
want to install it now?

Rosetta enables Intel-based features to run on Apple Silicon Macs.
Reopening applications after installation is required to start using
Rosetta.

Use of this software is subject to the Software License Agreement applicable to
the software you are downloading. A list of Apple SLAs may be found here:
http://www.apple.com/legal/sla/

Not Now m

https://support.apple.com/en-us/HT211861

O

black hat

ASIA 2023

Quick look at Rosetta 2

Rosetta 2 on a Mac with Apple silicon (from Apple Platform Security)

A Mac with Apple silicon is capable of running code compiled for the x86 64 instruction set using a
translation mechanism called Rosetta 2. There are two types of translation offered: just in time and
ahead of time.

Ahead-of-time translation

In the ahead-of-time (AOT) translation path, x86_64 binaries are read from storage at times the system
deems optimal for responsiveness of that code. The translated artifacts are written to storage as a
special type of Mach object file. That file is similar to an executable image, but it’s marked to
indicate it’s the translated product of another image.

https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf

O

black hat

ASIA 2023

AOT file

. [Ox00001000 [xAdvc]e 0% 150 .aot] d $r @ ti .0.__TEXT.__text
Contains translated Arm64 code : b R N e =X
] . 9x00001000 858011 f8 stur x5, [x4, -8]
Mach-O 64bit (not special format) 0x00001004 852000d1 sub x5, x4, 8
0x00001008 8ebc3ea? stp x14, x15, [x4, -0x18]
. 9x0000100 8cb43da9 stp x12, x13, [x4, -0x28]
| ocated at /prlvate/va r/db/oah/*/*.aot 92@99@1@1; 8880bc:9 stp ie, xg, [x4),(—exss);]!

0x00001014 00018452 mov w@, 0x2008

0x00001018 98Ffffde adrp x24, Oxffffffffffff3000
0x0000101c 18233791 add x24, x24, Oxdc8
0x00001020 99000010 adr x25, 0x1030

0x00001024 b866bfa9 stp x24, x25, [x21, -0x10]!
0x00001028 988c1ff8 str x24, [x4, -8]!

AOT files are protected by SIP

We cannot modify these files even if we have root privileges
* Note that we can modify XTA cache files with administrator privileges on Arm-based Windows

Cannot show content even as root

(sh-3.2# 1s /private/var/db/oah
ls: /private/var/db/oah: Operation not permitted

[sh-3.2# 1s -1la0 /private/var/db | grep oah

1ls: DifferentialPrivacy: Operation not permitted SIP prOtECted
ls: fts_read: Operation not permitted

drwxr-xr-x@ 5 _oahd _oahd 160 Oct 12 13:24 oah

O

black hat

ASIA 2023

Rosetta 2 components

Some Rosetta 2 components related to this research

translate tool - A CLI tool for translating an x64 executable without executing it
runtime - A runtime library injected into a translated process
oahd - A management daemon of AOT files

oahd-helper - A translator of an x64 executable /Library/Apple/usr/libexec/oah

Inanoha®konakagawas-MacBook-Pro ~ % 1ls /Library/Apple/usr/libexec/oah/

total 328

drwxr-xr-x root wheel 96 Oct 18:27 Rosettalinux

lrwxr-xr-x root wheel 32 Nov 17:15 debugserver -> /usr/libexec/rosetta/debugserver
—TWXT—XT-X root wheel 365168 Oct 10:59 libRosettaRuntime

lrwxr—-xr-x root wheel 28 Nov 17:15 runtime -> /usr/libexec/rosetta/runtime
lrwxr-xr-x root wheel 35 Nov 17:15 translate_tool -> /usr/libexec/rosetta/translate_tool
Inanoha®konakagawas-MacBook-Pro ~ % 1ls /usr/libexec/rosetta

total 776

—=ITWXI=XT=X root wheel 456112 Oct 17:43 debugserver

—TWXT—XT—-X root wheel 112960 Oct 17:43 oahd /US r’/]_ 1 bexec/ rosetta
=IWXI=XT=X root wheel 142816 Oct 17:43 oahd-helper

—=IWXI=XT=X root wheel 56816 Oct 17:43 oahd-root-helper

—TWXI=XT—X root wheel 233056 Oct 17:43 runtime

—TWXT—XT—X root wheel 53360 Oct 17:43 translate_tool

O

black hat

ASIA 2023

Simplified execution flow

x64 Mach-O 1. Pass the file descriptor of
_ x64 Mach-O (via Mach IPC)

System Library #0
/* AQOT file #3 2. Create a process

AOT file #1 M
X64 process oahd-helper
AOT file #2
AOT file #3 «

4. The AOT file is mapped 3. Translate it into an AOT file

Directory of AOT files (/var/db/oah)

O

black hat

ASIA 2023

Simplified execution flow

x64 Mach-O
System Library #0 5. Go to the AQT file
and continue its
AOT file #3 execution

AOT file #1

X064 process

oahd-helper
AOT file #2

AOT file #3

Directory of AOT files (/var/db/oah)

O

black hat

ASIA 2023

transiate tool

CLI tool for translating an x64 executable
Translates an x64 executable without executing it
Sends a file descriptor of an x64 executable to oahd via Mach IPC

$ translate_tool <path to x64 executable>

Creates an AOT file of

specified executable

Decompile: entry - (translate_tool) $ 0 & B

fd_x64 = _auth_stubs::_fileport_makeport(fd _k64,&local 4f8);
if (fd_x64 == @) {
Vare = __ auth_stubs::_mig_get_special_reply_port(); g
local_sd8 = ox1o1%; T e fileport_makeport() system call for

sStackl238 = -0x8000; . . .
local 440 = (ulong)pwVar3 & BxfFFFTFIf | (ulong)uvart << 0xcoggQRSRII [A]0) the file descnptgr to oahd
local_4c8 = 0x3ad7900000000;
local_4c@ = 1;
local_4bc = (uint)local_4f8;
local_4b8 = 0x11000000000000;
__auth_stubs::_voucher_mach_msg_set(&local_4d8);
mVar7 = __auth_stubs::_mach_msg
((mach_msg_header_t x)&local_4d8,0x7304003,0x28,0x490, local_4d0._4 4_,0,0);
if ((((mVar7 == 0) && (local 4c8. 4 4 1= 0x47)) && (local 4c8. 4 4 == 0x3addd)) &&
(mStack1236 == 0x44c)) {
if (local 90 == 0) {

if ({{cCtark12722 » AY KL (Taral 20 == aY)Y LK

0

black hat

ASIA 2023

AOT files are cached for reuse

Apple Platform Security: “Rosetta 2 on a Mac with Apple silicon”

But the Rosetta runtime then sends an interprocess communication (IPC) guery to the Rosetta
system service, which asks whether there’s an AOT translation available for the current
executable image. If found, the Rosetta service provides a handle to that translation, and it’s

mapped into the process and executed.

How does Rosetta 2 determine whether the specified

X64 executable was previously translated or not?

https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf

O

black hat

ASIA 2023

How to check the binary was previously translated?

oahd calculates the dedicated hash and uses it for checking

| named this hash “AOT lookup hash”

AOT files are saved under the /var/db/oahd subdirectory whose name is AOT lookup hash
* If there is a directory corresponding to the AOT lookup hash, oahd reuses the AOT file in this directory

[nanohaPkonakagawas—-MacBook-Pro ~ % 1ls -1 /var/db/oah/*/*/ | head -n 12
/var/db/oah/19¢c42bf2224b08cd167106942a8636a379e6e93e083021d3f6ebbbe@59a447¢c6/0775eaf196097296a141bT625F43d32¢c83bfalsaab731a1501¢c0366da7048158/:
total 64

-rwxr-xr-x 1 _oahd _oahd 29296 Oct 12 15:34 libswiftObjectiveC.dylib.aot

/var/db/oah/19c42bf2224b08cd167106942a8636a379e6e93e083021d3f6ebbbe@59a447c6/07aff20794bd1410cbT711a4654122e5eb02bb3d573214e3898ddec466a550f1/:

total 48
-rwXxr-xr-x 1 _oahd _oahd 22920 Oct 12 15:34 libswiftWatchKit.dylib.aot

AOT lookup hash

But how oahd calculates the AOT lookup hash from an x64 executable?
» A possible candidate is calculating the cryptographic hash from the entire binary contents and the file path
 But this is time-consuming...

0

black hat

ASIA 2023

How does Rosetta 2 calculate AOT lookup hash?
$ @@

512 __auth_stubs::_CC_SHA256_Init((CC_SHA256_CTX x)local_8210);

513 pppppppuVardl = local_8bf8; 1

514 if (-1 < local_8be8) { SHA'256 IS CaICUIated
515 _Stack35824._0_4_ = (CC_LONG) local_8be8._7_1_; .
516 pppppppuVardl = &local_8bf8; from the fO”OWIng data
517 }

518 /% file path x/ full path

519 __auth_stubs::_CC_SHA256_Update

520 ((CC_SHA256_CTX %) local_8210, pppppppuVardl, (CC_LONG)_ Stack35824); ° -

521 /* mach_header + load_commands x/ MaCh O header
522 __auth_stubs::_CC_SHA256_Update ® UId

523 ((CC_SHA256_CTX x)local 8210,&local _8080,CONCAT22(local _817e,uStack33152));

524 /* uid x/ .

525 __auth_stubs::_CC_SHA256_Update((CC_SHA256_CTX x*) local_8210,&stat.st_uid,4); .gld

526 /* gid x/ .

527 __auth_stubs::_CC_SHA256_Update((CC_SHA256_CTX *)local_8210,&stat.st_gid,4); miime

528 /% mtime x/

529 __auth_stubs::_CC_SHA256_Update((CC_SHA256_CTX) local_8210,&stat.st_mtimespec,0x10); .Ctlme

530 /* ctime x/

531 __auth_stubs::_CC_SHA256_Update((CC_SHA256_CTX *)local_8210,&stat.st_ctimespec,0x10); ° Cl'tl me

532 /* crtime *x/

533 __auth_stubs::_CC_SHA256_Update . .

534 ((CC_SHA256_CTX #)local 8210,&stat.st_birthtimespec,0x10); file size

535 /* st_size x/

536 __auth_stubs::_CC_SHA256_Update((CC_SHA256_CTX x) local_8210,&stat.st_size,8);

537 __auth_stubs::_CC_SHA256_Final((uchar x)&local 8230, (CC_SHA256_CTX x)local_8210);

0

black hat

ASIA 2023

)

How does Rosetta 2 calculate AOT lookup hash

Decompile: FUN_1000058cc - (oahd) 423 o]
512 __auth_stubs::_CC_SHA256_Init((CC_SHA256_CTX x)local _8210);
513 pppppppuVardl = local_8bf8; 1
< e oben) 1 SHA-256 Is calculated
515 ~Stack35824. 0 4 = (CC_LONG)local 8bhe8. 7 1 ; .
516 pppppppuVardl = &local_8bf8; from the fO”OWIng data
517 }
518 /* file path *x/ °fUII path
519 __auth_stubs::_CC_SHA256_Update
520 ((CC_SHA256_CTX %) local_8210, pppppppuVardl, (CC_LONG)_ Stack35824); ° -
521 /* mach_header + load_commands x/ MaCh O hea‘der
522 T S B PN SN . CLIAND T [P P S .uid
523 " g);
s24 mtime: Time when file data last modified .gid
525 . . .
526 ctime: Time when file status was last :
527 : o . mtime
28 changed (inode data modification) ' .
530 2 . 1 2 2
o crtime: Time of file creation . :
532 /7 Ul LLIC ~f .Crtlme
533 __auth_stubs::_CC_SHA256_Update . .
534 ((CC_SHA256_CTX *)local _8210,&stat.st_birthtimespec,@x10); file size
535 /* st_size %/
536 __auth_stubs::_CC_SHA256_Update((CC_SHA256_CTX x) local_8210,&stat.st_size,8);
537 __auth_stubs:: CC_SHA256_Final((uchar x)&local 8230, (CC_SHA256_CTX x)local 8210);

O

black hat

ASIA 2023

How does Rosetta 2 calculate AOT lookup hash?
0@

512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537

__auth_stubs::_CC_SHA256_Init((CC_SHA256_CTX x)local _8210);
pppppppuVardl = local_8bf8;
if (-1 < local_8bes) {

_Stack35824._0_4 = (CC_LONG)local 8be8._7_1 ;

pppppppuVardl = &local_8bf8;

}
/* file path */
__auth_stubs::_CC_SHA256_Update
((CC SHA?56 CTX x%)1local 2210.nonnnnnuVardl . (CC 1 ONG) Stack3sl24) -

Code section of the target binary is not used for
calculating the AOT lookup hash

If we can modify the code section while keeping
the AOT lookup hash unchanged, we can cause
the hash collision

VILL_ONAZLOU_LIA) LULAL_OZ1l¥,asldl.oL_DLTLiLLmnespecC ,vx1yy),
/* st_size x/
__auth_stubs::_CC_SHA256_Update((CC_SHA256_CTX x) local_8210,&stat.st_size,8);
__auth_stubs:: CC_SHA256_Final((uchar x)&local 8230, (CC_SHA256_CTX x)local 8210);

SHA-256 is calculated
from the following data
full path

Mach-O header

*uid

gid
‘mtime
ectime
ecrtime
file size

O

black hat

ASIA 2023

A plan for code injection

Code injection by causing the AOT lookup hash collision

1. Inject shellcode
Into a benign app

EE
/Users/ffri

Benign app

execC
/Users/ffri/a.out

2. Create an AOT file
with translate_tool

3. Restore to the original
benign app while keeping the
AOT lookup hash unchanged
4. The AOT file is reused because
~ the AOT lookup hash is the same

5. Poisoned AOT file is
used for execution &)

0

black hat

ASIA 2023

A plan for code injection

Code injection by causing the AOT lookup hash collision

1. Inject shellcode
Into a benign app

EE
/Users/ffri

3. Restore to the original e _
benign app while keeping the I\/Iodlfylng the file updates

AQOT lookup hash unchanged the timestamps
4. The £

~ the AOT lookup hash is the same

2. Create an AOT file
with translate_tool

Benign app

execC
/Users/ffri/a.out

5. Poisoned AOT file is
used for execution &)

O

black hat

ASIA 2023

Timestomping after modifying

We can restore mtime and crtime after modifying the file contents
We can change timestamps with SetFile command (or touch command)

SETFILE(1) General Commands Manual SETFILE(1)

NAME
Jusr/bin/SetFile — set attributes of files and directories (DEPRECATED)

SYNOPSIS

fusr/bin/SetFile [-P] [-a attributes] [-c creator] [-d date] [-m date] [-t typel
file ...

However, we cannot restore ctime with this method
* Because modifying mtime and crtime always updates ctime

O

black hat

ASIA 2023

Writing to a file via mmap
According to the older UNIX specification of mmap ()

The st _ctime and st_mtime fields of a file that is mapped with MAP_SHARED
and PROT_WRITE, will be marked for update at some point in the interval
between a write reference to the mapped region and the next call to msync() with
MS_ASYNC or MS_SYNC for that portion of the file by any process. If there is
no such call, these fields may be marked for update at any time after a write
reference if the underlying file is modified as a result.

“may be marked for update” drew my attention
This phrase has been changed to “shall be marked” in the latest version

Does writing to a file via mmap () without msync () update ctime and mtime on macOS?

https://pubs.opengroup.org/onlinepubs/7908799/xsh/mmap.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/mmap.html
https://apenwarr.ca/log/20181113

0

black hat

ASIA 2023

Experiment: writing to a file via mmap

std: :puts("Write data to testfile™);

const char® buf = "Hello World!"; : .
write(fd, buf, strlen(buf)); Create a file and write some contents

show timestamps(fd);

std::puts(”"Change data via mmap & unmap");

char® mbuf = (char*)mmap(NULL, strlen(buf), PROT READ | PROT WRITE, MAP_SHARED, fd, @);
mbuf[8]++;

munmap(mbuf, strlen(buf));
show timestamps(fd),;

Write to the file via mmap () and call munmap() (without calling msync())

std::puts(”"Change data via mmap & munmap & msync”);

mbuf = (char*®)mmap(nULL, strlen(buf), PROT_READ | PROT_WRITE, MAP_SHARED, fd, @);
mbuf[8]++;
msync(mbuf, strlen(buf), MS_SYNC); Write to the file via mmap () and call msync() and munmap ()
munmap(mbuf, strlen(buf));

show timestamps(fd),;

O

black hat

ASIA 2023

Result: writing to a file via mmap

nancha@kohnakagawas-MacBook-Pro ~ %
Write data to testfile

mtime: 6E4815d4f4 361F97bd

ctime: 64815d4f4 361f97bd

crtime: 64815df4 361bf4fl

Change data via mmap & unmap

mtime: 64815df4 361F97b4 mtime and ctime are not updated

ctime: 64815d4f4 361F97bd
!
crtima: GAGISAEL 3G1LFAFL although contents are changed!

Change data via mmap & unmap & msync
mtime: 64815d4f4 3628819f })
ctime: 64815df4 3628019F mtime and ctime are updated when

crtime: §4815df4 361bf4fl msync IS called before munmap

Summary: we can change file contents while keeping
timestamps unchanged via mmap () if we don’t call msync ()

O

black hat

ASIA 2023

AOT Poisoning

Steps to inject code
1. Inject shellcode into a benign app
2. Translate the target with translate_tool
3. Restore it to the original benign executable via mmap () without calling msync()
4. Poisoned AOT file is used, and injected code is executed!

O

black hat

ASIA 2023

Limitation

Cannot be applied to a signed x64 executable &)
There are two reasons why this technique cannot be applied to a signed executable
1) In-place modification of a signed executable causes the program to crash when running
2) oahd does not accept an x64 executable with an invalid code signature

O

black hat

ASIA 2023

Why cannot be applied to sighed executables?

1) In-place modification of a signed executable causes the crash when running
This mitigation is introduced in Apple Silicon Mac

Note that this occurs even if you restore the executable to a valid signed one on disk
* For more details, see and

Specifically, code signing information is hung off the vnode within the kernel, and
modifying the file behind that cache will cause problems. You need a new vnode, which
means a new file, that is a new inode.

- Quinn “The Eskimo!” @ Developer Technical Support @ Apple

To avoid this crash, we need to create a copy of the target executable
 But this always updates the timestamps, which means the change of AOT lookup hash...

https://developer.apple.com/documentation/security/updating_mac_software?language=objc
https://developer.apple.com/forums/thread/669145

O

black hat

ASIA 2023

Why cannot be applied to sighed executables?

2) oahd does not accept an x64 executable with an invalid code signature
Cannot create an AOT file for a signed x64 executable containing our payload

test.out has an invalid

. code signature
nanoha®konakagawas—MacBook-Pro ~ % codesign ——Veiiiy ——vciLuusc LcastL.uutl

test.out: invalid signature (code or signature have been modified)

In architecture: x86 64

nanoha®konakagawas-MacBook-Pro ~ % /usr/libexec/rosetta/translate_tool test.out
aot _daemon_translate failed for test.out: -302
nanoha@konakagawas-MacBook—-Pro ~ % J

translate tool exits abnormally

O

black hat

ASIA 2023

How Apple fixed this issue?

Fixed in Big Sur 11.6 & Monterey 12.0.1

Writing to a file via mmap() & munmap() without calling msync() updates ctime
* We cannot modify file contents while keeping AOT lookup hash unchanged

nanoha@kohnakagawas-MacBook-Pro ~ % ./mmap_test.out
Write data to testfile

mtime: 6401665e 775d6C

ctime: 6401665e 775d6cC

crtime: 6401665e 732126

Change data via mmap & unmap
mtime: 6401665e 775d6c¢

ctime: 6401665e 792aab Ctime iS updated
crtime: 6401665e 732126

Apple updated APFS

APFS to fix this issue

We would like to acknowledge Koh M. Nakagawa of FFRI Security, Inc. for their assistance.

https://support.apple.com/en-us/HT212804

0

black hat

ASIA 2023

Is the Apple’s fix enough?

Apple patched APFS, but is it enough?
They did not change the way to calculate the AOT lookup hash

Decompile: FUN_100005878 - (oahd) % [[E
484 if (local 8090 != "\0@') {
485 __auth_stubs::_CC_SHA256_Init((CC_SHA256_CTX %) local_8210);
486 pppppppuVardl = local_8bf8;
487 if (-1 < local 8bes) {
488 _Stack35824._@_ 4 = (CC_LONG)local 8bes._7_1_;
489 pppppppuVardl = pppppppuVar42;
490 }
491 /* file path x/
492 __auth_stubs::_CC_SHA256_Update
493 ((CC_SHA256_CTX *)local_8210, pppppppuVardl, {CC_LONG)_Stack35824);
494 /* mach_header + load_commands %/
495 __auth_stubs::_CC_SHA256_Update
496 ((CC_SHA256_CTX *)local_8210,&local_8080,CONCAT22(local_817e,uStack33152));
497 /% uid %/ 1
498 __auth_stubs::_CC_SHA256_Update((CC_SHA256_CTX %) local_8210,&local_8bad.st_uid,4); The Wa-y to CaICUIate AOT IOOkup haSh IS the
499 /% gid x/ . .
500 __auth_stubs::_CC_SHA256_Update((CC_SHA256_CTX x)local_8210,&local_8bab.st_gid,4); Same a.S the preVIOUS VerSIOn Of maCOS
501 /*x mtime x/ . . .
502 _ auth stubs:: CC_SHA256_Update -> ! !
503 ((CC_SHA256_CTX *)local_8210,&local_8bad.st_mtimespec,0x10); Apple S fIX relles On the APFS S fIX
504 /x ctime x/
505 __auth_stubs::_CC_SHA256_Update
506 ((CC_SHA256_CTX %) local_8210,&local_8bad.st_ctimespec,0x10);
507 /x crtime |/
508 __auth_stubs::_ CC_SHA256_Update
509 ((CC_SHA256_CTX *)local 8210,&local 8bad.st_birthtimespec,@x10);
510 __auth_stubs:i_CC_SHA256_Update((CC_SHA256_CTX %) local_8210,&local_8bad.st_size,8);
511 __auth_stubs::_CC_SHA256_Final{(uchar x)&local_ 8230, (CC_SHA256_CTX x)local_8210);

O

black hat

ASIA 2023

Filesystems other than APFS

macOS supports various filesystems other than APFS (e.g., HFS+, FAT32, exFAT, ...)

We can create a dmg file with hdiutil command and mount it
» Can specify the filesystem of the dmg image by “fs” option

If we use the other filesystem, we can bypass Apple’s fix&)
HDIUTIL(1) General Commands Manual HDIUTIL(1)

NAME
hdiutil — manipulate disk images (attach, verify, create, etc)

-fs filesystem
where filesystem is one of several options such as [JIf+, BE+J (JMIF+), BEX, JBE+X, APFS,

FAT32, ExFAT, or UDF. A full list of supported filesystems can be found in create -help. -fs
causes a filesystem of the specified type to be written to the image. The default file system
is APFS. If -partitionType and/or -layout are specified, but -fs is not specified, no file

We can still perform AOT poisoning by downgrading the filesystem

O

black hat

ASIA 2023

Timestamps of other filesystems

Timestamps of FAT32 m m m

Time Time Date Date Date Birth
Stored Resolution | Modified | Accessed | Change
UTC Jan 1, Updated Updated N/A Creation

1970 1n
local time

Table 1: FAT32 Modification times (Lee, 2015)

ctime is not defined for FAT32!
Therefore, timestomping after the file modification
does not change the AOT lookup hash

https://www.sans.org/white-papers/36842/

blgk hat

ASIA 2023

We need a code injection applicable to a signed executable
If we apply to a sighed executable, we can abuse it for hijacking the trust

1) In-place modification of signed executable causes the crash when running
2) oahd does not accept an x64 executable with invalid code signature

We must bypass these two restrictions

. I X _ . b y $ -
o : 4 ° \‘ L . L 4 &)
- E \ N O = .8
‘ ,] g ~ S R %
3 e - g ° . R B !
lack hat | - &=)
. - b R e \ S
‘ e ~ < -

. QQ i
ASIA 2023 L

How to inject code into signed executable?

1) In-place modification of signed executable causes the crash when running

This restriction has already been

bypassed because we no longer need
In-place modification.

blg?:k hat

ASIA 2023

2) oahd does not accept an x64 executable with invalid code signature

This restriction can be bypassed by re-

signing with an ad-hoc signature

blgk hat

ASIA 2023

oahd accepts an executable with an adhoc signature and translates it

nanohaPkonakagawas—MacBook-Pro ~ % codesign -dv a.out

Executable=/Users/nanoha/a.out
Identifier=a-555549447df10050ac72331e98fe98467d54962d

Format=Mach-0 thin (x86 _64)
CodeDirectory v=20400 size=483 flags=0x2(adhoc) hashes=9+2 location=embedded

Signature=adhoc

Info.plist=not bound adhoc signed
TeamIdentifier=not set

s L . translated successfully
Internal requirements count=0 size=12
[nanoha®konakagawas-MacBook-Pro ~ % /usr/libexec/rosetta/translate tool a.out

However, codesign command changes the Mach-O header
So, simply re-signing with codesign command changes the AOT lookup hash
-> | developed a new tool to sign with an ad-hoc signature while keeping the Mach-O header unchanged

blg?:k hat

ASIA 2023

Steps to sign with an ad-hoc signature while keeping the Mach-O header unchanged
1. Create a copy of an x64 executable and remove the existing signature
2. Sign it with an adhoc signature and extract the signature in it
3. Inject the extracted signature into the original x64 executable
4. Tweak the code directory in the adhoc signature to make it a valid one

Code director = - -
OO Mach-O cposs y ode o ory a
Mach-O header = codeHash[O ad-NocC signhature
o SHA-256 codeHash[1, all be chiafiged
0x2000 SRR SHA-256 COdeHaSh 2 heea " H0e "
0x3000 Code section £ -
Code signature @ Please refer to *OS Internals

weonvrs B Volume 3 for code signature format.
Code directory [... . gnate

O

black hat

ASIA 2023

True AOT poisoning

Steps to inject code
1. Create a FAT32 dmg and mount it
Copy an x64 executable to the mounted point
Inject shellcode into it and re-sign it with an ad-hoc signature
Run translate_tool to create an AOT file
Restore the target executable to the original executable having the valid code signature
Restore the timestamps
Run the executable
Injected code is executed! &

© N O Ok WD

O

black hat

ASIA 2023

Exploitation

O

black hat

ASIA 2023

TCC bypass

Transparency, Consent, and Control (TCC)

Prevents an attacker from accessing some sensitive information without user consent
» Sensitive information includes contacts, camera, screen, microphone, emails, ...
* For more details, see excellent TCC research by Csaba & Wojciech at and

iiii Security & Privacy

Last login: Wed Oct 19 13:52:17 on ttys@0@ General FileVeult Firewall (g
'nanoha@Takamachinokasoumashin ~ % 1s Library/Application\ Support/AddressBook

< Location Services

Allow the apps and services below to determine your location.
| Contacts

Calendars
. System Services Details...
H Reminders

C

“Terminal™ would like to access
your contacts.

> Indicates an app that has used your location within the
last 24 hours.

® Accessibility
About Location Services & Privacy...

Don't Allow

a Click the lock to make changes.

https://www.blackhat.com/us-21/briefings/schedule/#-ways-to-bypass-your-macos-privacy-mechanisms-23133
https://www.blackhat.com/eu-22/briefings/schedule/#knockout-win-against-tcc----new-ways-to-bypass-your-macos-privacy-mechanisms-29272

O

black hat

ASIA 2023

TCC bypass

TCC bypass can be achieved by code injection
E.g., CVE-2020-24259 in Signal.app

 Typically, microphone access is granted to Signal.app

 Old Signal.app had vulnerable allow-dyld-environment-variables and disable-library-validation entitlements

« S0, we can easily execute code in the context of Signal.app by injecting dylib with DYLD_INSERT_LIBRARIES
« Similar issues were present on other applications (e.g., Zoom¥)

This exploit does not work if the library validation is enabled
» Because the library validation blocks loading of an unsigned dylib

But code injection by AOT poisoning can be applied to any x64 executable

* Even Iif the library validation is enabled!
* Recent macOS apps are built as FAT, so even if a user uses the app natively, an attacker can still use this technique

https://objective-see.org/blog/blog_0x56.html

€ VAFLRARE WE BR UIVKY ALY ‘ ’ O 0 W) - Q & 5R9E(A) 17:04 |

VulnEmu

o0 < > i 'XaVYF1 T3 — Q i

BREHEEShIRE

(cdhash-HV-_GIgx-py3.9)) []

—f% FileVault 7747 9x—) | FSANRY—

AHE®E BOO7 7V r—>avOEBFTE. TO7 7V -3
Y KEEORBOTREF .

ZWTARIF IR
/ BN h
Z7ANET ALY .

BN R
TEMP

X7« 7 & Apple Music

r——
=
[56

HomeKit

areei e a e ns

Bluetooth * =
B

2022-0...9 17.01.52
1—YIHETRRR

A—=RMA=3>

i .
LTI R

ﬂ ZETBCRA¥EIUYILET, ¢ ?

O E2® AT

#BHASIA @BlackHatEvents

LIl T Lel-Ia02

O

black hat

ASIA 2023

Hiding malicious payload in SIP-protected location

If an attacker uses this technique to execute malware, IR process becomes harder

Because the original x64 executable does not contain any malicious payload
* The code to be executed is in the SIP-protected /var/db/oah/*/* directory

« Cannot access these poisoned AOT files without disabling SIP
No AV software
Hmm, | cannot find SIP protected location scans this file
any suspicious because it does
indicators. Seems /var/db/oah/*/* not have SIP-
benign. related
entitlements

Used for execution

NotMalwareX64 NotMalwareX64.aot

blgk hat

ASIA 2023

Anti-Debugging

AOT-poisoned x64 executable cannot be debugged with LLDB

When analyzing it, we cannot perform dynamic analysis with LLDB!
» This makes a dynamic analysis harder

(cdhash-py3.10) nanohaPkonakagawas—-MacBook-Pro aot_poisoning % /tmp/mnt/ls

The default interactive shell is now zsh. The AOT file of

To update your account to use zsh, please run "chsh -s /bin/zsh’. Is is poisoned
For more details, please visit https://support.apple.com/kb/HT208050.
bash-3.2% exit

(cdhash-py3.10) nanohalPkonakagawas—-MacBook-Pro aot_poisoning % 1lldb /tmp/mnt/ls
(11db) target create "/tmp/mnt/ls"

Current executable set to '/tmp/mnt/ls' (x86_64). LLDB cannot start debugging

(1ldb) T the AOT-poisoned executable
Process 19280 launched: '/tmp/mnt/ls' (x86_64)

warning.

g: libobjc.A.dylib is being read from process memory. This indicates that LLDB could not
read from the host's in-memory shared cache. This will likely reduce debugging performance.

Process 19280 exited with status = 5 (0x00000005) Terminated due to signal 5

blgk hat

ASIA 2023

The Apple’s fixes

Fixed at macOS Ventura 13.0 & Monterey 12.6 & Big Sur 11.7
Apple assigned CVE-2022-42789
Eligible for a generous bounty &)

AppleMobileFilelntegrity

Available for: Mac Studio (2022), Mac Pro (2019 and later), MacBook Air (2018 and later), MacBook

Pro (2017 and later), Mac mini (2018 and later), iMac (2017 and later), MacBook (2017), and iMac Pro
(2017)

Impact: An app may be able to access user-sensitive data

Description: An issue in code signature validation was addressed with improved checks.

CVE-2022-42789: Koh M. Nakagawa of FFRI Security, Inc.

https://support.apple.com/en-us/HT213488

O

black hat

ASIA 2023

Analyzing the Apple’s fixes

We cannot execute an AOT-poisoned x64 executable anymore

(.venv) ~/D/cdhash_py /tmp/mnt/ls
rosetta error: /var/db/oah/dd43d62a19ce057f8021211c9880f870de7b97f589a14630d7302

4968fab51ad4/c7cd916b3e13b2b0e18d50akac84ce2b66cfaf5934fd193a265e23e40abd71ab/1s.
aot: attachment of code signature supplement failed: 1
[1] 2100 trace trap /tmp/mnt/ls

O e s naa, Kernel Log says “supplemental signature for
HFUAF L - AFTYJ: <BEANRE2DFEEA> : ”
file does not match any attached cdhash

2188(1s) supplemental signature for file (ls.aot) does not match any attached cdhash (error: 1).

CODE SIGNING: proc

Rosetta 2 checks code signing status by calling fentl_nocancel

iVarl = fentl_nocancel((int)fd_aot,F_ADDFILESUPPL, (long)&local 70);
/* WARNING: Subroutine does not return * F—ADDFILESUPPL command is used
FUN_0001d9a4("%s: attachment of code signature supplement failed: %11d");
¥
If fcntl_nocancel returns EPERM,

Rosetta 2 throws the exception.

O

black hat

ASIA 2023

About the Apple’s fixes

Apple’s fixes rely on checking the dynamic code signing status (see)
-> This means that we can still inject code into non-signed executables

So, TCC bypass is fixed, but a local attacker can still perform other exploitations
 Hiding malicious payload in SIP protected location
» Anti-debugging

O

black hat

ASIA 2023

Supplemental signature & linkage hash

Apple introduced a mitigation to code injection modifying AOT file before | reported

This is performed by adding supplemental signature to the AOT file of a sighed x64 executable
« Supplemental signature contains the cdhash of the original executable named linkage hash
» Kernel (at ubc_cs_blob_add_supplement()) checks linkage hash matches cdhash of the original x64 executable

 If not matched, AOT file is not used for the execution

This mitigation has already been introduced in the first Big Sur!
* S0, unlike Windows, Apple limited the code injection directly modifying AOT file

However, AOT poisoning bypassed this mitigation
* For more detalils, see

CodeDirectory struct contains

members related to linkage
hash from version 0x20600

tyvpedef struct _ CodeDirectory {

uint32_t magic;
uint32_t length;

uint3i2_t wversion;

{ Version @x2968@ =/

uint& t linkageHashType;

uint& t linkagefApplicationType;

uint32_t linkageQffset;

uint32_t linkageSize;
w'ar end_withLinkage[8];

uintls t linkageApplicationSubType;

~

J

https://github.com/apple-oss-distributions/xnu/blob/5c2921b07a2480ab43ec66f5b9e41cb872bc554f/osfmk/kern/cs_blobs.h#L209
https://github.com/apple-oss-distributions/xnu/blob/5c2921b07a2480ab43ec66f5b9e41cb872bc554f/osfmk/kern/cs_blobs.h#L209
https://github.com/apple-oss-distributions/xnu/blob/5c2921b07a2480ab43ec66f5b9e41cb872bc554f/osfmk/kern/cs_blobs.h#L209

O

black hat

ASIA 2023

A similar code injection on Arm-based Windows

blgk hat

ASIA 2023

Arm-based Windows also reuses the translation result like Rosetta 2
When we run the same application twice, existing XTA cache files are reused
-> Are there any hashes corresponding to the AOT lookup hash on Windows?

To find the cache file, the XtaCache service should first open the executable
Image, map it, and calculate its hashes. Two hashes are generated based
on the executable image path and its internal binary data.

- Windows Internals, Part2 7t edition

blgk hat

ASIA 2023

Only XtaCache service and

B | PC > Local Disk (C) > Windows > XtaCache Administrators group users
can access this directory

@ =w
B ADOBEARMHELPER.EXE.50B4313C4D8BC729AEASFEODECBF4580.6A21A56F7C6F1DFE1 683646B024EE7E2.x86.mp.2.jc

(] ADOBEARMHELPER.EXE.BEBFCOF9166EBDE3E88562F4D5E7B8D7.8A3AEFDFBF419143DD663B21422E83D4.x86.mp.2.jc

B ADOBEXMPDLL.E45C300CD08F62005D5890D0BEB80951.D42AB57E084277F204C4ADA44BE9AET5Fx64.m p.3.JC

ADOBEARMHELPER. EXE . 50B4313C4D8BC729AEASFEODECBF4580.6A21A56F7C6F 1DFE1683646B024EE7E2 . x86

.mp.2.jc
* module header hash
 module path hash

But how are these hashes calculated?

O

black hat

ASIA 2023

How to calculate module path hash?

cf Decompile: FUN_140004¢78 - (XtaCache.exe)

23 }

;4 Elizmil40001040((1onglong *) &DAT 14000f4d0,uvar3); Module path hash is

26 /* file path (e.g., \DEVICE\HARDDISKVOLUME3\USERS\TEST) */ calculated by the NT
27 NVar2 = BCryptHashData(param 1,* (PUCHAR *) (param 3 + 4), (ULONG) *param_3,0) ; Ee(S\V{elWeL-NiaWal-10glcNe gl
2t 1f (-l < War2) { | target x86/x64 executable
29 NVarZ = BCryptFinishHash (param 1, (PUCHAR)pbOutput, (ULONG)uVars,0);

uvar3 = RtlAllocateHeap (DAT 14000£f4c8,0,0x40);

J L

[
= -]

0

black hat

ASIA 2023

How to calculate module header hash?

63 ageNtHeader = (PIMAGE NT HEADERS64)RtlImageNtHeader(1mageBase),
64 uvar’7 = 0;

65 offsetOfNtHeader = (int)pImageNtHeader - (int)imageBase;

66 /* PE32 */

67 if ((pImageNtHeader->OptionalHeader) .Magic == 0x10b) {

68 uVarl = offsetOfNtHeader + 0x34;

/* DOS + NT headers */ Module header hash is calculated

0 NVar3 BCryptHashData (hHash, imageBase, uvarl, 0) ;

7 Lf (-1 < wvar3) from the following information:
72 /* To skip ImageBase field for hashing */ A DOS header

73 1var5 = (ulonglong)uVarl + 4; . .

74 |LAB_140004ab8: NT headers (not mcludmg
e N ImageBase)

16 /* Remalining NT headers */

17 NVar3 = BCryptHasnData(]'lH::ﬁ'h,imageBase + 1Vars, ¢ LaStW“teTlme (I e mtlme)
78 (pTmagelNtHeader->FileHeader) .S5izeOfOptionalHE [

79 if (-1 < nvar3) {

80 uVar/ = 0;

81 /* LastWriteTime */

82 NVar3 = BCryptHashData (hHash, (PUCHAR) &fileBasicInfo.LastWriteTime,8,0);

83 if (-1 < nvar3) {

84 uVar7 = 0;

85 NVar3 = BCryptFinishHash (hHash, (PUCHAR) pbOutput, (ULONG)uvar4, 0) ;

O

black hat

ASIA 2023

How to calculate module header hash?

pImageNtHeader = (PIMAGE NT HEADERS64)RtlImageNtHeader(1mageBase)
uvar’/ = 0;
offsetOfNtHeader = (int)pImageNtHeader - (int)imageBase;
/* PE32 */
if ((pImageNtHeader->OptionalHeader) .Magic == 0x10b) {
uVarl = offsetOfNtHeader + 0x34;

/* DOS + NT headers */ Module header hash is calculated

NVar3 = BCryptHashData (hHash, imageBase,uvarl,0);

Lf (-1 < wvar3) from the following information:
/* To skip ImageBase field for hashing */ S DOS header

1vars (ulonglong)uvarl + 4;

LAB 140004ab8: * NT headers (not inCIuding
uvar7 = 0; o ImaQEBaSe)
/* Remalining NT headers */
NVar3 = BCryptHasaData (hHash,imageBase + 1Var5h, ° LaStW”teTlme (l e mtlme)

(pTmagelNtHeader->FileHeader) .SizeOfOptional HESAET

if (-1 < nvar3d) {

1uva

Only mtime is used for hashing &)
. We can easily cause the hash collision for the module
header hash by timestomping mtime

O

black hat

ASIA 2023

translate tool for Arm-based Windows?

There is no translate_tool on Arm-based Windows &)

We cannot create an XTA cache file without running an x86/x64 executable

-> To address this issue, XtacTranslateTool is created
 This tool enables us to create an XTA cache file without running
* Does not require admin privileges

* For more details, see

O

black hat

ASIA 2023

XTA cache poisoning

Steps to inject code

1. Inject shellcode into the target executable
Create an XTA cache file using XtacTranslateTool
Restore the target executable to the original one
Restore the LastWriteTime
Run the target executable
Poisoned XTA cache file is used for the execution®)

o 0k WD

Unlike macOS, XtaCache service happily accepts an executable with an invalid code signature
* S0, we can easily apply this technigue to a signed executable

O

black hat

ASIA 2023

Exploitation: stealth PE backdooring

Backdooring PE files is used to achieve persistence

Backdooring PE Files with Shellcode

The purpose of this lab is to learn the Portable Executable (PE) backdooring technique by adding a new
readable/writable/executable code section with our malicious shellcode to any portable executable file.

High level process of this technique:

We can easily detect backdoored PE by inspecting it
» Because this method typically adds new section and modifies the entrypoint of the target PE file

PE backdooring by XTA cache poisoning does not have such downsides
« Backdoored PE file is the same as the original one, so we cannot see any suspicious indicators in this

https://www.ired.team/offensive-security/code-injection-process-injection/backdooring-portable-executables-pe-with-shellcode#final-note
https://www.ired.team/offensive-security/code-injection-process-injection/backdooring-portable-executables-pe-with-shellcode#final-note

O

black hat

ASIA 2023

Exploitation: user-assisted EoP

UAC elevation by hijacking the trust of software

UAC elevation prompt shows the origin of the target executable
- If it has a valid code signature, it shows “Verified publisher,” but if not, it shows “Publisher: Unknown” with the yellow stripe

If an attacker performs code injection with XTA cache poisoning, the code signature remains valid
* S0, chances are good that a user unintentionally executes it with admin privileges
* Installer is a good target because it is typically executed with admin privileges and has a valid code signature

User Account Control User Account Control

Do you want to allow this app from an
unknown publisher to make changes to your
device?

Do you want to allow this app to make
changes to your device?

. . }~ Adobe Acrobat Reader DC Inst
readerdc_jp_xa_mdr_install.exe

Publisher: Unknown

File origin: Hard drive on this computer

Verified publisher:
Adobe Inc.

Show more details Show more details

@ Microsoft Remote Desktop Edit Connections Window Help

ineté
ineté
ineté
ineté
ineté
ineté

kohnakagawa — nc -| 8080 — 80x24

[sh-3.2$% ifconfig | grep inet
inet 127.0.0.1 netmask BxTfe00000

::1 prefixlen 128

fe80::1%1lo0 prefixlen 64 scopeid Ox1
fe80::94a7:51ff:fe82:8bb6%anpil prefixlen 64 scopeid Ox4
fe80::94a7:51ff:fe82:8bb5%anpi@ prefixlen 64 scopeid Ox5
fe80::70ed:3cff:fe55:4a54%apl prefixlen 64 scopeid @xb
fe80::cde:f636:dff6:dde8%end prefixlen 64 secured scopeid @xc

inet 192.168.0.2 netmask Oxffffffe® broadcast 192.168.0.255

ineté
. ed
ineté
rary
ineté
ineté
ineté
ineté
ineté
ineté
ineté
[sh-3.2% nc -1

2001:268:c208:cf0a:1402:309b:5b32:7cb4 prefixlen 64 autoconf
2001:268:c208:cf@a:fcdl:4cf3:2dbb:c26d prefixlen 64 autoconf f

fe80::fc63:beff:fefb:9033%awdlo prefixlen 64 scopeid Oxe
fe80::fc63:beff:fefb:9033%11wd prefixlen 64 scopeid Oxf
fe80::179d:ef86:c6c5:7¢c94%utun® prefixlen 64 scopeid ©x10
fe80::91be:64F7:6e25:dad1%utunl prefixlen 64 scopeid ©x11
fe80::ce81l:blc:bd2c:69e%utun2 prefixlen 64 scopeid @x12
fe80::8a47:74Ta:680d:4866%utun3 prefixlen 64 scopeid 0x13
fe80::e0ff:537e:3bla:8836%utuns prefixlen 64 scopeid Oxlé4
8080

Volterra

Recycle Bin

Command Prompt X + v

 @ae0O®REoO W

C:\Users\tsune\source\repos\XtacPoisoning\Release>whoami /priv

PRIVILEGES INFORMATION

Privilege Name Description
SeShutdownPrivil

SeChangeNotifyPr i Downloads X +
SeUndockPrivileg

SeIncreaseWorkin (@) yew - S © @ ®]
SeTimeZonePrivil

C:\Users\tsune\s ¢ 5 +v 4 {5 Downloads

4 Home Name
s Ko - Personal ~ Today
#» AcroRdrDC2200320322_en_US.exe
M Desktop »
E Documents #
L Downloads #
& Pictures »

@ Music »
1item | 1item selected 334 MB |

State
T sort v = View v
vl G
Date modified
3/24/2023 8:21 AM

0))

@ Q & FriMar24 8:24

Type Size

Application 342,173 KB

#BHASIA

@BlackHatEvents

O

black hat

ASIA 2023

Microsoft response

This issue does not meet the MSRC bar for an immediate security update
- MSRC

O

black hat

ASIA 2023

Is fixing this issue simple?
Naive approach: Hashing also ChangeTime (ctime) along with LastWriteTime (mtime)*

However, this is not enough!

Because we can use the same filesystem downgrade trick on Windows
 Mount FAT32 image and copy the target executable to it, then we can easily change the timestamps

But the filesystem downgrade trick is not required on Windows even if ctime is hashed

*Here we consider $STANDARD _INFORMATION timestamps and
SFILE_NAME timestamps in a directory index, which can be
accessed from NtQuerylnformationFile and NtQueryDirectoryFile(Ex)

0

black hat

ASIA 2023

Changing ctime and mtime is easy on Windows

NtSetInformationFile can change ctime and mtime simultaneously

typedef struct FILE BASIC_ INFORMATION {
LARGE_INTEGER CreationTime; // Created

LARGE_INTEGER LastAccessTime; // Accessed FILE BASIC INFORMATION contains Ctime,

LARGE_INTEGER LastWriteTime; // Modifed

LARGE _INTEGER ChangeTime; /{ Entry Modified rT]tIrT]EB, (:rtIrT]EB, Eif](j EitlfT]EB

ULONG FileAttributes;

} FILE_BASIC INFORMATIOM, *PFILE_BASIC TIMFORMATION;

vold SetFileBasicInformation(HANDLE fileHandle, FILE_BASIC INFORMATION& fileBasicInformation) {
IO STATUS BLOCK ioStatusBlock{};

const auto status = NtSetInformationFile(

fileHandle, Can change all timestamps (including ctime) to
sfostatusBlock, the values specified by FILE_BASIC_INFORMATION

&fileBasicInformation,
sizeof(FILE BASIC INFORMATION),

FileBasicIntTormation

O

black hat

ASIA 2023

Changing ctime and mtime is easy on Windows

NtSetInformationFile can change ctime and mtime simultaneously

typedef struct FILE BASIC_INFORMATION |
| ARGE_INTEGER CreationTime; // Created

LARGE_INTEGER LastAccessTime; // Accessed FILE_BASIC_INFORMATION contains ctime,
e e e e mtime, crtime, and atime
e s arl EVEN 1T CHME IS hashed we can still cause the hash
'- 5=-;'—j§f collision for module header hash

to

-> Hashing ctime Is not the ultimate fix to prevent Fii
XTA cache poisoning

FilebasiclnTormation

O

black hat

ASIA 2023

Summary & key takeaways

O

black hat

ASIA 2023

Summary

Rosetta 2 and Windows x86/x64 emulation reuses binary translation cache files to reduce
the amount of binary translation

These compatiblility layers use the dedicated hashes to check whether the specified
binary was previously translated

These hashes are calculated from timestamps, the header of the target file, the file path, etc.

New code injection techniques (AOT poisoning & XTA cache poisoning) are proposed
These are achieved by causing the collision of the dedicated hash
The detalils of these techniques and how to exploit them are covered

O

black hat

ASIA 2023

Black Hat Sound Bytes

For red team

New code injection techniques (AOT poisoning and XTA cache poisoning) with PoC code
* You can find the PoC code in the following links and can test these on your own environment

For security researchers

There are few studies on these compatibility layers and offensive tooling using these

* | hope to see more vulnerability research on this topic
* | hope this talk will be the starting point of your research

https://github.com/FFRI/XtacPoisoning
https://github.com/FFRI/AotPoisoning

O

black hat

ASIA 2023

Black Hat Sound Bytes

For OS developers

Failure to check the identity of a file correctly causes the security vulnerability to enable code injection
» Determining the identity of a file is difficult
* Implementing this correctly needs more consideration

Everyone

Be careful of these threats!
» Since Arm-based laptops are becoming more popular, an attacker will exploit these

O

black hat

ASIA 2023

Thank you

Any guestions and comments to
Twitter DM: https://twitter.com/ffri_research
e-mail: research-feedback@ffri.jp

M
i
0
I
J
0]
\

T
-
5
Ca
0

Appendix

O

black hat

ASIA 2023

Exploitations other than TCC bypass?

O

black hat

ASIA 2023

Limitations of AOT poisoning

Dynamic code signing becomes invalid

Therefore, this method cannot be used for bypassing dynamic code signing check
« Unfortunately, if we try to use this technique to Apple-signed executable, we cannot fully obtain its entitlements
 AMFI did a great job

[{.venv) nanoha@Takamachinokasoumashin cdhaﬁh:py % python main.py mount-fat32Z-image " /Library/Application Support/Microsoft/MAUZ.8/Microsoft]
Autolpdate.app"

Copied to ftmp/mnt/Microsoft AutoUpdate.app
[{.venv) nanoha@Takamachinokasoumashin cdhash_py % cp -R /tmp/mnt/Microsoft\ AutoUpdate.app .]

[{.venv) nanoha@Takamachinokasoumashin cdhash_py % python main.py inject-shellcode-and-sign "Microsoft AutoUpdate.app/Contents/MacO0S/msupdat]
g" "/tmp/mnt/Microsoft AutoUpdate.app/Contents/Mac0S/msupdate" ./shellcode/loop.bin

[nanoha@Takamachinokasoumashin cdhash_py % pgrep msupdate

3826

[nanoha@Takamachinokasoumashin cdhash_py % ./CheckSigningStatus 3826
SecCodeCheckValidity failed (-&67834)

O

black hat

ASIA 2023

Why did TCC bypass work?

Latest tccd checks the dynamic code signature for verifying its identity

* Its root cause is that tccd does not check the dynamic code signature
* tccd is now fixed to check the dynamic code signature

However, AOT poisoning can be used for bypassing TCC although the dynamic code signature
becomes invalid &)

| did not analyze its root cause, but tccd might still contain “weak” code signature verification

https://www.blackhat.com/asia-22/briefings/schedule/#macos-vulnerabilities-hiding-in-plain-sight-26073

O

black hat

ASIA 2023

How Apple fixed AOT poisoning?

O

black hat

ASIA 2023

Analyzing the Apple’s fixes

Rosetta 2 stops to execute an AOT-poisoned x64 executable

(.venv) ~/D/cdhash_py /tmp/mnt/ls
rosetta error: /var/db/oah/dd43d62a19ce057f8021211c9880f870de7b97f589a14630d7302

4968fab1ad4/c7cd916b3e13b2ble18d50a0ac84ce2b66cfaf5934fd193a265e23e40abd71ab/1s.
aot: attachment of code signature supplement failed: 1
[1] 2100 trace trap /tmp/mnt/ls »

Kernel Log says “supplemental
kernel signature for file does not match
$F7UAF L -- hFTV: <A R2DFEHR A 5

any attached cdhash

CODE SIGNING: proc 2188(1s) supplemental signature for file (ls.aot) does not match any attached cdhash (error: 1).

Rosetta 2 checks code signing status by calling fentl_nocancel

iVarl = fentl_nocancel((int)fd_aot,F_ADDFILESUPPL, (long)&local 70);
/* WARNING: Subroutine does not return * F—ADDFILESUPPL Command IS used
FUN_0001d9a4("%s: attachment of code signature supplement failed: %11d");

If fcntl_nocancel returns EPERM,

¥

Rosetta 2 throws the exception.

0

black hat

ASIA 2023

Analyzing the Apple’s fixes: Dive into XNU

F_ADDFILESUPPL command of fcntl_nocancel
Its implementation resides In

kernel blob size = CAST DOWN(wvm size t, fs.fs blob size);
kr = ubc_cs blob _allocate(&kernel blob addr, &kernel blob size);
if (kr != KERN_SUCCESS) {

error = ENOMEM;

goto dropboth;

J Load a code signing blob of an AOT
file into Unified Buffer Cache (UBC)

int resid;
error = vn_rdwr{UI0 _READ, wvp,
(caddr_t)kernel blob_addr, (int)kernel blob size,
fs.fs_file start + fs.fs_blob start,
UIO SYSSPACE, @,
kauth_cred get(), &resid, p);

The code signing blob is passed to the

error = ubc_cs_blob _add supplement{vp, ivp, fs.fs_file start, UbC CS blOb add Supplement() func'non
&kernel blob_addr, kernel blob size, &blob);

https://github.com/apple-oss-distributions/xnu/blob/5c2921b07a2480ab43ec66f5b9e41cb872bc554f/bsd/kern/kern_descrip.c#L4119-L4144

O

black hat

ASIA 2023

Analyzing the Apple’s fixes: Dive into XNU

bool found but not walid = false;
for {orig blob = ubc_get cs blobs{orig wvp); orig blob != MNULL;
orig blob = orig _blob-»csb_next) {
if (orig blob-»csb _hashtype == tmp_blob.csb _linkage hashtype &&
memcmp(orig blob-»csb_cdhash, tmp _blob.csb linkage, CS CDHASH LEN) == @) {

// Found match! The validity of dynamic code
found_but_not_wvalid = ((orig blob-»>csb flags & C5 VALID) != C5 VALID); 1 1 1
o signing status is checked.
}
¥
4 if (orig blob == NULL) {
if (orig_blob == NULL || found but_not wvalid) { EPERM IS returned When the
// Mot found. _ _ _ _ _ _
dynamic code signing is invalid
\ error = (orig blob == NULL) ? ESRCH : EPERM;)
error = ESRCH;

printf("CODE SIGNING: proc %d(%s) supplemental signature for file (%s) "
"does not match any attached cdhash (error: %d).\n",

proc_getpid(p), p-»p_comm, iname, error);

https://github.com/apple-oss-distributions/xnu/compare/e7776783b89a353188416a9a346c6cdb4928faad...5c2921b07a2480ab43ec66f5b9e41cb872bc554f

O

black hat

ASIA 2023

Supplemental signhature & linkage hash

‘rj’ R ifi'.,. o :()\: \(};{:yigf»;: zqiitg\,{' ..,i}
RN . ATS
blackhat ok N N

ASIA 2023

Supplemental signature & linkage hash

An AOT file for a signed x64 executable has supplemental signature

Supplemental signature has linkage hash, which is the cdhash of the original x64 executable
» codesign command does not show the linkage hash
» Tool to show linkage hash is available at

Show cdhash of x64 app

nanoha®konakagawas-MacBook-Pro aot_poisoning % codesign -a x86_64 -dv —--verbose=5 /Applications/zoom.us.app/Contents/Mac0S/zoom.us 2>&1 | grep CDHash=
CDHash=6f1b6166b9b4087466234d95e6712ec3c409ccl?

nanohaPkonakagawas-MacBook-Pro aot_poisoning % cp /var/db/oah/34f@bfal532b665107cd8b98ae70fda24fa7c0a227007528b9b8609c0d92b08d/c5daR97089369a479044db904d T
5f32f57471f2b29332a8b59520bb56b41c39fe/zoom.us.aot .

nanoha@Pkonakagawas-MacBook-Pro aot_poisoning % poetry run python main.py parse-codesig zoom.us.aot

load command for code signature is...

data offset is @Oxcae®

num_blobs = 2 Show linkage hash of the
supplement signature of
AOT file

Super Blob

SuperBlob Header: cdhash of the original
magic: @xfade@cco
length: @x2ab X64 app matches
numBlobs: 2 .
type: 0x0 I|nkage haSh
offset: O@xlc
type: 0x10000
offset: @x252

linkageHash: 6f1b6166b9b4087466234d95e6712ec3c409ccl?

https://github.com/FFRI/AotPoisoning

O

black hat

ASIA 2023

Supplemental signature & linkage hash: checking

ubc_cs blob _add supplement() checks linkage hash matches cdhash of x64 executable

This check exists at least in the initial release of macOS Big Sur If cdhash != linkage
if (orig_blob == NULL) { hash
/f Not found.
for (orig_bleob = orig_uip-»cs_bleobs; orig bleb [= HNULL,;
orig_blob = orig_blob-»csb_next) { proc_t p;
ptrauth_utils_auth_blob _generic(orig_blob->csb_cdhash, const char *iname = vnode_getname_printable(vp);

p = current_proci);

sizeof(orig blob-»>csb_cdhash),
0S_PTRAUTH_DISCRIMIMATOR("cs_blob.csb_cd_signature"),

printf{"CODE SIGNING: proc %d(%s) supplemental signature for file (%s) "
PTRAUTH_ADDR_DIVERSIFY,

. | CheCk thaSh —— "does not match any attached cdhash.n",
orig blob-»csb_cdhash_signat) p-»p_pid, p->p_comm, iname):
if (orig_blob-»csb_hashtype == b Ilnkage hash

memcmp(orig blob-»>csb cdhash, blob->csb linkage, CS CDHASH LEN) == @) { error = ESRCH: ubC_Cs_blob_a.dd_supplement
// Found match fails

vnode _putname_printable{iname);
break; de_p _p)i

vnode_unlock({orig_vp);

Why is AOT poisoning not mitigated by this check?

https://github.com/apple-oss-distributions/xnu/blob/bb611c8fecc755a0d8e56e2fa51513527c5b7a0e/bsd/kern/ubc_subr.c#L3878-L3890
https://github.com/apple-oss-distributions/xnu/blob/bb611c8fecc755a0d8e56e2fa51513527c5b7a0e/bsd/kern/ubc_subr.c#L3878-L3890

0

black hat

ASIA 2023

Supplemental signature & linkage hash: checking
Multiple code signing blobs

for (orig blob = orig uip->cs_blobs; orig blob != NULL; are attached to the Single
orig blob = orig blob->csb next) f vnode of the x64 executable.

ptrauth utils auth blob generic{orig blob->csb cdhash,
sizeof(orig blob-»>csb_cdhash), In this case, there are two
0S_PTRAUTH_DISCRIMINATOR("cs blob.csb_cd_signature"), code signing blobs for valid
PTRAUTH_ADDR_DIVERSIFY, X64 executable and code-

Injected x64 executable.

orig blob-»csb _cdhash_signature);
if (orig blob-»csb _hashtype == blob->csb _linkage hashtype &%&
]

memcmp (orig blob-»>csb_cdhash, blob->csb linkage, €5 CDHASH LEN) == 8) {

!/ Found match!

If one of the blobs contains the
valid cdhash, this check passes.

brealk;

-> Therefore, linkage hash does
not prevent from AOT poisoning

O

black hat

ASIA 2023

XtacTranslateTool

O

black hat

ASIA 2023

How XTA cache files are created?

Communication between xtajit and XtaCache is achieved using NtAlpcSendWaitReceivePort
... BTCpuNotifyMapViewOfSection is called every time a module is loaded (since
NtMapViewOfSection is called every time a module is loaded). Eventually it passes a module
file handle to NtAlpcSendWaitReceivePort, which sends the message to the compiler, xtac.exe.

- Teardown: Windows 10 on ARM - x86 Emulation

Pass a module file
handle & share

Translate and

x86 emulation process

Pass arguments for create a new
. execution paths '
xtajit.dll D AELEE Gl oosystemRootvoxtaCache)

— XtaCache.exe — xtac.exe — TEST.DLL...x86.mp1.jc

test.dll -
x86 module is - /
newly loaded

O

black hat

ASIA 2023

How XTA cache files are created?

Communication between xtajit and XtaCache is achieved using NtAlpcSendWaitReceivePort
... BTCpuNotifyMapViewOfSection is called every time a module is loaded (since
NtMapViewOfSection is called every time a module is loaded). Eventually it passes a module
file handle to NtAlpcSendWaitReceivePort, which sends the message to the compiler, xtac.exe.

- Teardown: Windows 10 on ARM - x86 Emulation

Pass a module file
handle & share

Translate and

x86 emulation process

Pass arguments for create a new
. execution paths '
xtajit.dll D e Gl oosystemRootvoxtaCache)

— XtaCache.exe — xtac.exe — TEST.DLL...x86.mp1.jc

IR f we can “emulate” IPC between xtaijit.dl - 5 y

and XtaCache.exe, we can create an XTA
cache file without executing it

O

black hat

ASIA 2023

Trace Buffer

xtajit/xtajitc4 has “Trace Buffer” shared between x86/x64 emu process and XtaCache
Used for sending hints about which x86/x64 code is emulated or already present in XTA cache files*
- xtac.exe compiler create XTA cache files based on the valid entries in this buffer * Windows Internals, Part2 7™ edition
Trace buffer contains the list of pairs, which consist of module ids and RVAs

 This buffer can be easily modified
We can control which code in which module should be translated by modifying the trace buffer

cf Decompile: #JccClientAddTrace — (xtajit64.dll.x64)

struct ModuleIdAndOffset {

2 puvar?7 = * (uint **) (param_1 + 0x38);
uin't32_'t j_d_' 24 1var5 = *(longlong *) (param 1 + 0x40);
25 #VPCRt1AcquireSRWLockExclusive ((undefined8 *) (param 1 + 0x30));
uint32_t offset; 26 | wvari = *puvari: -
} . 27 uvarz = puVar7[1l];
? 28 uvar3 = arz + 1;

ul
(

Trace Buffer is updated at
struct TraceBuffer { S I #JccClidnetAddTrace

}
if (uvar3 == uvarl) {

uin‘t32_t numEntr‘ies; 34 uvar4d = #VPCRtlReleaseSRWLockExclusive (param 1 + 0x30);
}

ModuleIdAndOffset modIdAndOffsets[1]; ;; else |

puVar’[(ulonglong)uvVarz * 2 + 2]

uvareé uint) (1var5 - 8U >> 3);

uint32_t begin;

*(uint *) (param 2 + 0x20);

}-’ 38 puvVar’[(ulonglong)uvarz * 2 + 3] param 3;

O

black hat

ASIA 2023

How to find Trace Buffer?

Since Trace Buffer is dynamically allocated, its address is determined at runtime
To find the Trace Buffer, we “mark” the Trace Buffer by loading “MarkerLibrary”

« MarkerLibrary contains various branch instructions Example of MarkerLibrary
» After this dll is loaded, Trace Buffer is filled with RVAs of these branch instructions e Z::Ceax .
* These values are unique to this dll, so by scanning these values, we can find the Trace Buffer call lai;el7
std: :tuple<TraceBuffer*, uint32_t, uint32_t> FindTraceBufferHeuristically() { ret
MEMORY_BASIC_INFORMATION mbi = {}; label®:

LPVOID offset = (LPVOID)0x1000;
while (VirtualQueryEx(GetCurrentProcess(), offset, &mbi, sizeof(mbi))) {

mov eax, 1

offset = (LPVOID)((DWORD_PTR)mbi.BaseAddress + mbi.RegionSize); et
if (mbi.AllocationProtect == PAGE_READWRITE &%& labell:
mbi.State == MEM_COMMIT && call label®
mbi.Type == MEM_MAPPED) { ret
auto idx = GetTraceBufferIdx((TraceBuffer*)mbi.BaseAddress); label?2:
if (didx.has_value()) { call labell
return {(TraceBuffer*)mbi.BaseAddress, (uint32_t)mbi.RegionSize, idx.value()}; ret
}
} ret

}
return { nullptr, © , 0};

O

black hat

ASIA 2023

Steps to translate an x86/x64 executable

1. Load target executable with LoadLibraryExA*
*To avoid running the DIIEntry, DONT_RESOLVE DLL REFERENCES flag must be specified

Drop MarkerLibrary

Load the MarkerLibrary to mark the Trace Buffer

Find the Trace Buffer from the mark recorded in step 3

Change module ids and RVAs of the Trace Buffer to the id and RVAs of the module loaded at step 1
XtaCache file is created

o 0k WD

Code is avallable on GitHub ()

https://github.com/FFRI/XtacPoisoning

O

black hat

ASIA 2023

Benefits of XTA cache poisoning

O

black hat

ASIA 2023

Benefits of XTA cache poisoning

Can be applied to apps not having relative path DLL load hijacking vulnerability

IS typically performed by hijacking vulnerable DLL loading
» But since XTA cache poisoning can be applied to any x86/x64 executable, we do not need to find such vulnerable apps
* Note that we basically cannot use other code injection techniques calling CreateProcess
» Because they fail with ERROR_ELEVATION_ REQUIRED when the target app requires elevation

Can be used even If ValidateAdminCodeSignatures is enabled

ValidateAdminCodeSignatures: “Only elevate executables that are signed and validated policy setting”
* S0, we cannot elevate a non-signed executable (or executable with invalid signature) if this setting is enabled
* But XTA cache poisoning can bypass this restriction!

https://learn.microsoft.com/ja-jp/archive/blogs/winsdk/dealing-with-administrator-and-standard-users-context
https://learn.microsoft.com/en-us/windows/security/identity-protection/user-account-control/user-account-control-group-policy-and-registry-key-settings
https://learn.microsoft.com/en-us/windows/security/identity-protection/user-account-control/user-account-control-group-policy-and-registry-key-settings

blgk hat

ASIA 2023

Project Champollion - by me

Why is Rosetta 2 fast? - @dougallj

TSOEnabler - @ saagarjha

https://github.com/FFRI/ProjectChampollion
https://dougallj.wordpress.com/2022/11/09/why-is-rosetta-2-fast/
https://github.com/saagarjha/TSOEnabler

O

black hat

ASIA 2023

References - related research on macOS exploits

Shield - An app to protect against process injection on macQOS - @theevilbit
Process injection: breaking all macOS security layers with a single vulnerability - @xnyhps
20+ Ways to Bypass Your macOS Privacy Mechanisms - @theevilbit and @ _r3ggi

Knockout Win Against TCC - 20+ NEW Ways to Bypass Your MacOS Privacy Mechanisms -
@theevilbit and @ _r3ggqi

https://theevilbit.github.io/shield/
https://sector7.computest.nl/post/2022-08-process-injection-breaking-all-macos-security-layers-with-a-single-vulnerability/
https://www.blackhat.com/us-21/briefings/schedule/index.html#-ways-to-bypass-your-macos-privacy-mechanisms-23133
https://www.blackhat.com/eu-22/briefings/schedule/#knockout-win-against-tcc----new-ways-to-bypass-your-macos-privacy-mechanisms-29272
https://www.blackhat.com/eu-22/briefings/schedule/#knockout-win-against-tcc----new-ways-to-bypass-your-macos-privacy-mechanisms-29272

O

black hat

ASIA 2023

References - related research on Arm-based Windows

Teardown: Windows 10 on ARM — x86 Emulation - Cylance Research Team

WoW64 internals ...re-discovering Heaven’s Gate on ARM - @PetrBenes

Jack-in-the-Cache: A New Code injection Technique through Modifying X86-to-ARM Translation
Cache - by me

Appearances are deceiving: Novel offensive techniques in Windows 10/11 on ARM - by me

https://blogs.blackberry.com/en/2019/09/teardown-windows-10-on-arm-x86-emulation
https://wbenny.github.io/2018/11/04/wow64-internals.html
https://www.blackhat.com/eu-20/briefings/schedule/#jack-in-the-cache-a-new-code-injection-technique-through-modifying-x-to-arm-translation-cache-21324
https://www.blackhat.com/eu-20/briefings/schedule/#jack-in-the-cache-a-new-code-injection-technique-through-modifying-x-to-arm-translation-cache-21324
https://www.ffri.jp/assets/files/research/research_papers/Koh_Nakagawa_Appearances_are_deceiving_English.pdf

	Title
	スライド 1

	Agenda
	スライド 2: $ whoami – Koh M. Nakagawa (@tsunek0h)
	スライド 3: Agenda

	Introduction
	スライド 4: Arm-based laptops are becoming popular
	スライド 5: Translation/emulation technologies
	スライド 6: Binary translation result is cached
	スライド 7: My previous research at Black Hat EU 2020
	スライド 8: My previous research at Black Hat EU 2020
	スライド 9: Research motivation
	スライド 10: Introduction to macOS security model
	スライド 11: Introduction to macOS security model
	スライド 12: Code injection on macOS
	スライド 13: Code injection on macOS

	Rosetta 2 internals
	スライド 14: Rosetta 2 internals & a new code injection
	スライド 15: Installing Rosetta 2
	スライド 16: Quick look at Rosetta 2
	スライド 17: AOT file
	スライド 18: Rosetta 2 components
	スライド 19: Simplified execution flow
	スライド 20: Simplified execution flow
	スライド 21: translate_tool
	スライド 22: AOT files are cached for reuse
	スライド 23: How to check the binary was previously translated?
	スライド 24: How does Rosetta 2 calculate AOT lookup hash?
	スライド 25: How does Rosetta 2 calculate AOT lookup hash?
	スライド 26: How does Rosetta 2 calculate AOT lookup hash?

	AOT poisoning by APFS timestamp flaw
	スライド 27: A plan for code injection
	スライド 28: A plan for code injection
	スライド 29: Timestomping after modifying
	スライド 30: Writing to a file via mmap
	スライド 31: Experiment: writing to a file via mmap
	スライド 32: Result: writing to a file via mmap
	スライド 33: AOT Poisoning
	スライド 34
	スライド 35: Limitation
	スライド 36: Why cannot be applied to signed executables?
	スライド 37: Why cannot be applied to signed executables?
	スライド 38: How Apple fixed this issue?

	True AOT poisoning
	スライド 39: Is the Apple’s fix enough?
	スライド 40: Filesystems other than APFS
	スライド 41: Timestamps of other filesystems
	スライド 42: How to inject code into signed executable?
	スライド 43: How to inject code into signed executable?
	スライド 44: How to inject code into signed executable?
	スライド 45: How to inject code into signed executable?
	スライド 46: How to inject code into signed executable?
	スライド 47: True AOT poisoning

	Exploitation
	スライド 48: Exploitation
	スライド 49: TCC bypass
	スライド 50: TCC bypass
	スライド 51
	スライド 52: Hiding malicious payload in SIP-protected location
	スライド 53: Anti-Debugging

	Analyzing Apple's fixes
	スライド 54: The Apple’s fixes
	スライド 55: Analyzing the Apple’s fixes
	スライド 56: About the Apple’s fixes
	スライド 57: Supplemental signature & linkage hash

	XTA cache poisoning
	スライド 58: A similar code injection on Arm-based Windows
	スライド 59: AOT lookup hash for Arm-based Windows?
	スライド 60: Module header/path hashes
	スライド 61: How to calculate module path hash?
	スライド 62: How to calculate module header hash?
	スライド 63: How to calculate module header hash?
	スライド 64: translate_tool for Arm-based Windows?
	スライド 65: XTA cache poisoning

	Exploitation on Arm-based Windows
	スライド 66: Exploitation: stealth PE backdooring
	スライド 67: Exploitation: user-assisted EoP
	スライド 68
	スライド 69: Microsoft response
	スライド 70: Is fixing this issue simple?
	スライド 71: Changing ctime and mtime is easy on Windows
	スライド 72: Changing ctime and mtime is easy on Windows

	Summary
	スライド 73: Summary & key takeaways
	スライド 74: Summary
	スライド 75: Black Hat Sound Bytes
	スライド 76: Black Hat Sound Bytes
	スライド 77: Thank you

	Appendix
	スライド 78: Appendix
	スライド 79: Exploitations other than TCC bypass?
	スライド 80: Limitations of AOT poisoning
	スライド 81: Why did TCC bypass work?
	スライド 82: How Apple fixed AOT poisoning?
	スライド 83: Analyzing the Apple’s fixes
	スライド 84: Analyzing the Apple’s fixes: Dive into XNU
	スライド 85: Analyzing the Apple’s fixes: Dive into XNU
	スライド 86: Supplemental signature & linkage hash
	スライド 87: Supplemental signature & linkage hash
	スライド 88: Supplemental signature & linkage hash: checking
	スライド 89: Supplemental signature & linkage hash: checking
	スライド 90: XtacTranslateTool
	スライド 91: How XTA cache files are created?
	スライド 92: How XTA cache files are created?
	スライド 93: Trace Buffer
	スライド 94: How to find Trace Buffer?
	スライド 95: Steps to translate an x86/x64 executable
	スライド 96: Benefits of XTA cache poisoning
	スライド 97: Benefits of XTA cache poisoning

	References
	スライド 98: References - related research on Rosetta 2
	スライド 99: References - related research on macOS exploits
	スライド 100: References - related research on Arm-based Windows

