
CODEBLUE 2014.12.18-19

Takahiro Matsuki (FFRI)
Dennis Kengo Oka (ETAS)

 Introduction

 About ECU Software

 Overview of TriCore

 Investigation and Confirmation of Attack Methods

 Demo

 Summary and Future Plans

2

 Previous research has shown that vehicle ECUs can be targeted by

attackers through injection of messages on the CAN bus – what
about ECU software?

 ECU microcontroller architecture is different from traditional PC
architecture; therefore, traditional software attacks do not work?

 ECU microcontrollers have specific security countermeasures
preventing software attacks?

 If software is vulnerable, by adjusting traditional software attacks to
ECU microcontroller architecture, it is possible to execute attacks?

3

 ECU Hardware and Software Configuration

◦ ECU functions and microcontrollers, bus, I/O Interface

◦ What microcontrollers are used

 ECU Microcontroller Architecture

◦ Program Execution Method

◦ Instruction Execution Flow, Register, Memory Layout

 ECU Software Execution Environment and Development
Environment

◦ Library, Compiler

◦ Content of the code generated by development tools

◦ Reverse engineering methods of the program files

4

About ECU Software

5

 Basically every modern production car has a multitude of electronic
control units to provide safety- as well as comfort functions.

 Average vehicle has up to 70 ECUs

 >20,000,000 lines of source code

 Electronic components are estimated to cost about 50% of the
automotive production costs by 2015

 50% infotainment, 30% powertrain and transmission, 10% chassis
control, 10% body and comfort

6

 Engine control unit
◦ Fuel amount and mixture, air and fuel delivery timing, valve timing, ignition timing,

emission control, etc…

 Transmission control unit

◦ Gear change, shift lock, shift solenoids, pressure control solenoids, etc…

 Body control unit

◦ Central locking, immobilizer system, power windows, climate control, etc…

 ABS/ESP control unit

◦ Regulating brake pressure, traction control, cornering brake control, etc…

7

 Typical feedback control system

 1. Monitor input. e.g. timer, sensors, CAN

 2. Calculate or lookup appropriate response

 3. Generate corresponding outputs

8

 Fully custom, proprietary software

 Unix-based proprietary software

 Standardized software. e.g. AUTOSAR

9

Overview of TriCore

10

 Microcontroller for Vehicle ECUs

 Manufactured and sold by Infineon

◦ Spin off of Semiconductor Unit from the German manufacturer

Siemens AG

 ECUs With TriCore

◦ Bosch EDC17 & MED17, Siemens

 Car Manufacturers Using ECUs with TriCore

◦ Audi, BMW, Citroen, Ford, Honda, Hyundai,

Mercedes-Benz, Nissan, Opel, Peugeot, Porsche, Renault, Seat,

Toyota, Volkswagen, Volvo

11

 Command Set
◦ 32 bit RISC Architecture

 Unique Register Configuration
◦ Completely separated address and data registers
◦ A0~A16, D0~D16

 Model Number and Specifications of the
Microcontroller Used in this Research
◦ TC1797 (AUDO Future)

 TriCore Architecture 1.3.1

 Clock 180 MHz

12

 Research of Open Information and
Specification Documents on the Web
◦ Official User’s Manual

 Most reliable information source

 Focused on memory related charts/diagrams

 Keyword search for security related terms

 security, protection, password

◦ TriCore Architecture Overview

 Summarized material of the User’s Manual

 13

 Searched Research Papers
◦ TriCore Emulator

 Porting TriCore to QEMU
◦ Porting Linux Kernel to TriCore

 Searched for Information/Tools for Software Developers of
ECU Software
◦ Development Environment TASKING VX-toolset for TriCore

(Evaluation Edition)
 Compiler, IDE with simulator

◦ Evaluation Board Infineon Starter Kit TC1797
◦ FlexECU development platform

 Reverse Engineering of the Binary
◦ Possible to Disassemble using IDA Pro

 File Format is ELF for Siemens TriCore

14

Investigation and Confirmation
of Attack Methods

15

 Non-Memory Corruption

Vulnerabilities

◦ Access Control Issues

◦ Encryption Strength Issues

◦ Inappropriate Authentication

◦ Conflictions

◦ Certificate / Password

Management Issues

◦ etc.

Since it was difficult to obtain and analyze actual ECU
Software, we hypothesized about the possibility of memory

corruption vulnerabilities.

 Memory Corruption

Vulnerabilities

◦ Buffer Overflow

◦ Integer Overflow

◦ Use After Free

◦ Null Pointer Dereferences

◦ Format String Bugs

◦ etc.

16

 Buffer Overflow

◦ Stack Overflow

◦ Heap Overflow

 Integer Overflow

◦ Hypothesized that integer overflows can cause of heap overflows

 Format String Bug

◦ Possible to overwrite an arbitrary value in an arbitrary address, hypothesized that

attacks are possible

 Use After Free

◦ Implied attacks are possible because C++ code is executable with TriCore

 Null Pointer Dereference

◦ Trap occurs by access to memory address zero, hypothesized attacks are possible

17

 Stack Overflows

◦ For TriCore, unlike x86 and others, the return address is saved

in the address register (A11) instead of the stack, therefore

overwriting the return address using a stack overflow is not

possible.

 Heap Overflows

◦ Will examine TriCore’s heap management in the near future

18

 Possibilities of a Stack Overflow Attack
◦ If the buffer and function pointer exist on the stack

in the following code flow, it is possible to change
the execution flow of the program by a stack
overflow

main() check(f_ptr)

receive()

compare()

success()

failure()

19

f_ptr = &compare()

failure() { ...

}

success() {

}

compare() { ...

}

receive() {

// receive input value

input = …

char buffer[10];

strcpy(buffer, input);

}

check(f_ptr) {
// call receive() to receive incoming values
 receive();
// call compare() using a function pointer
 f_ptr();
}

main () {

function_ptr = &compare;
…
check(function_ptr);

}

 Example Code

20

 Memory Layout

Address

0x8000 010C

0x8000 013C

0x8000 0170

0x8000 017C

0x8000 0188

…

0xD000 8FC8

0xD000 8FE0

Variable

check()

receive()

compare()

success()

failure()

…

buffer[]

function_ptr

21

main() check(f_ptr)

receive()

compare()

success()

Failure()

check() calls f_ptr() which now points to success()
(0x8000 017C) instead of compare() (0x8000 0170)

22

 Issues
◦ If compiler optimization is “on”, the function pointer

will be stored in the address register

◦ Unclear whether there are similar code patterns in
actual ECU software

23

Considering Attacks
Possibilities Using TriCore’s

Control Mechanism

24

 Preconditions

◦ It is possible to overwrite data by using memory corruption

vulnerabilities

◦ Under the above condition, considered ways to execute

arbitrary code

 TriCore’s Control Mechanism

◦ Context Management Mechanism

◦ Interrupt/Trap Mechanism

25

Attack Methods Using the
Context Management

Mechanism

26

 About Context

◦ The register value is CSA (Context Save Area)

Saves and restores in TriCore’s unique memory space

 Types of Context

◦ 2 Types: Upper context and Lower context

◦ Upper context

 call command, interrupt, automatically saves when trapped

◦ Lower context

 Explicitly saved by using a dedicated command, used for
passing parameters

27

Reference: Tricore Architeture Overview

http://www.infineon-ecosystem.org/download/schedule.php?act=detail&item=44

28

Reference: Tricore Architeture Overview

http://www.infineon-ecosystem.org/download/schedule.php?act=detail&item=44

29

 CSA is Managed by Link Lists
◦ Used CSA List (PCX) , Unused CSA List (FCX)

◦ Pointer to the first element of each list is PCX, stored
in FCX register

 However, needs to be converted because it is not a raw
address

 Reference: Tricore Architeture Overview

http://www.infineon-ecosystem.org/download/schedule.php?act=detail&item=44

30

 Method 1：CSA Overwriting
◦ By overwriting any return address saved in

the CSA using a memory corruption
vulnerability, it is possible to run code of an
arbitrary address

 Method 2：CSA Injection
◦ By overwriting a Link word of the CSA using a

memory corruption vulnerability, it is possible
to restore crafted Upper context (including
return address) and run arbitrary code.

31

 Code on the right is the result of execution
without augments
func1
func2
func3

 Rewrite the return address (*ret) within
func2 saved in the CSA to func3 address
(0x80000360)

 When returned to func1, the A11 register
value restores to func3 (0x80000360)

 Jump to func3 on func1 return

32

 CSA overwrite using an evaluation board was
possible in the same way as the simulator
◦ There are memory protections to prevent CSA

overwrites by default.

◦ May be possible to exploit on actual ECU Software

33

Attack Methods Using the
Interrupt and Trap Mechanisms

34

 When an interruption occurs, the
Interrupt Vector Table (IVT) is
referred, and the Interrupt Service
Routine (ISR) corresponding to the
Pending Interrupt Priority Number
(PIPN) is executed

 IVT Start Address

◦ BIV Register (Begin Interrupt
Vector)

 Addresses of entry point of each
ISR
◦ BIV | (ICR.PIPN << 5)

 ICR (Interrupt Control
Register)

Reference: Tricore Architeture Overview

http://www.infineon-ecosystem.org/download/schedule.php?act=detail&item=44

ISR is user-defined PIPN 0~255

35

 A mechanism used when an
exception occurs. It is trapped
and runs a specific process
◦ Causes of Traps

 Command exceptions,
unauthorized memory
access, etc…

 When a trap occurs, the Trap
Vector Table is referred, and
the Trap Service Routine
corresponding to the Trap
Class Number (TCN) is
executed.

Reference: Tricore Architeture Overview

http://www.infineon-ecosystem.org/download/schedule.php?act=detail&item=44

36

 Method 1: Overwrite the IVT
◦ By overwriting the jump code to the ISR in the IVT, when a

certain interrupt occurs, run arbitrary code

 Method 2: Overwrite the TVT
◦ By overwriting the TSR code in the TVT , when a

certain trap occurs, run arbitrary code

37

 BIV value 0xa00f0000

 Define a ISR as __interrupt(3)
hoge_isr() , a jump code to hoge_isr()
is allocated to
0xa00f0060 (0xa00f00+ 32*3) ,
making it possible to overwrite

 Overwrite possible on simulator
◦ However, because whether an interrupt

could be triggered intentionally is
unknown, left untested

◦ In the real project, the 0xA segment is
mapped on the Flash memory, and may
not be overwritable.

 The TVT is similarly overwritten

38

 The BIV and BTV values of the evaluation board are
different from the simulator
◦ BIT @ 0xF7E1FE20, BTV @ 0xF7E1FE24

 Protected

 Overwriting from the debugger possible

 Tried to overwrite the code by disabling the
protection and a trap2 occurred

 Probably cannot exploit on actual ECU software

39

Verification on an Evaluation
Board

40

 HP EliteBook 2530p, Win7, Centrino2
◦ HIGHTEC Free TriCore Entry Tool Chain
◦ BUSMASTER

 Infineon TriBoard TC1797 V5.0

 ETAS ES592.1

41

ES592.1 TriBoard Notebook

Ethernet

CAN USB

42

43

Demo

44

Summary and Future Plans

45

 Considered attack methods on ECU software in which memory corruption

vulnerabilities exist

 If memory corruption vulnerabilities exist, it may be possible to execute

arbitrary code

◦ If a buffer overflow exists, it is possible to execute arbitrary code under certain

conditions

◦ By altering the CSA, it is possible to execute arbitrary code

◦ By altering the interrupt/trap vector tables, it is impossible to execute arbitrary code

 Created vulnerable ECU software and conducted an attack demo

 This research is a result of a study of logical attack methods and a demo

conducted on a vulnerable software sample. This study does NOT

indicate anything about existing threats on actual ECU software.

46

 Additional Research
◦ Study other vulnerabilities and architecture specific issues

 Demonstrate the Threats
◦ Reverse engineering of ECU software and investigate if memory

corruption vulnerabilities exist

◦ Attack actual vulnerabilities and verify if the ECUs stop or if
anything abnormal occurs

 Consider Countermeasures

◦ Consider countermeasures of ECU software vulnerabilities

◦ Consider measures to efficiently discover vulnerabilities resulting
from programming errors

47

Thank you

48

