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Grape  
A Generative Fuzzer 

 
– Inspired by Scapy , Sulley, PeachFuzz, et cetera 

 
– Generalized Fuzzing: can fuzz packets, files, higher level 

interactions 
 

– Handles responses: can interact with stateful protocols 
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Fuzzing (Very Much In Brief) 
• Testing a system by subjecting it to malformed inputs 
• Broadly, two types 

– Mutating - Take existing inputs, tweak them 
– Random Bit Flipping 
– Field alteration (requires knowledge of fuzzed 

format) 
– Input samples important 

– Generative - Use set of rules to create new inputs 
– Also requires knowledge of fuzzed format 
– Rules determine coverage 
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Fuzzing steps 
 
• Find or define attack surface 

 
• Generate Input Cases 

 
• Feed Them To Target 

 
• Monitor For Crashes / Unusual Behaviour 

 
• Collect & Analyse Crash Data 
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Fuzzers - Generality 
• Most fuzzers are quite specific 

– Fuzzers for various protocols 
• SNMP/DHCP/ICMP/etc 

– Fuzzers for specific file formats 
• PDF/HTML/SWF/etc 

 
Scapy is an example of a more general fuzzing system, but still 

network focused. 
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Fuzzers - Smartness 
• Fuzzers vary in ‘randomness’ 
• Most fuzzers are smart 

– Requires understanding the format of the input being 
fuzzed 

– Mutate/Generate input such that it’s likely to break the 
system (length fields, etc) 
 

Generally: Try to imagine how someone would have messed 
up trying to implement the code parsing the input you’re 
attacking. 
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Statefulness 
 

• Sometimes protocols requiring keeping state 
• A particular problem for generative fuzzers (mutative fuzzers 

can usually playback their inputs) 
• Need to incorporate responses from target into future fuzz 

cases 
• Examples 

– Fuzzing an FTP server’s command line parsing 
– Fuzzing a TCP implementation (sequence and 

acknowledgement numbers) 
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Grape 
• Generative Fuzzer 
• Handles responses for stateful fuzzing 
• Rules for generation written in a YAML-like dialect 
• Compose rules into fuzz scenarios with Scapy-like syntax 
• Pluggable backends – output can be to file, network, etc 
• Sensible default low-level protocols – fuzz HTTP without 

fuzzing (or thinking about) IPv4
• Heartbeat-based monitoring 
• No crash data collection yet  
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Scenario 

Config

Heartbeat

Fuzzing 

Group

Group

Configuration for this 
scenario. 
E.g. setting a path and 
low layer. 

Example: 
config { 
rule_path: http/ 
low_layer: ether/ipv4/tcp 

} 
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Scenario 

Config

Heartbeat

Fuzzing 

Group

Group

Monitor the target with a 
“heartbeat”

Example: 
heart_beat { 
group { 

    send: http_head 
    recv: recv_http_head 
} 

} 
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Simple Interactions 
send: send this to (network/ a file) 
 
recv: Receive this response (network only for now) 

recv rules match the incoming data with certain rules 
–If no match, skips to next fuzzing fuzzing case 

 
 

Note: no ‘real’ flow control 
–Use several groups, instead 
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Packet Structure Description 
Here’s where we took inspiration from Scapy 
There’s ‘layers’ 

ether/ipv4/tcp(syn:1)/payload(data:”AAAAA”) 
 

‘/’ separates layers, parentheses allow overwriting of named 
values inside the ‘rules’  
‘sublayers’ can be placed in parentheses  
 
ether/ipv6(routing(type:0))/udp/random(50) 
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Rule Definitions 
The structures of generated inputs  are composed  
from ‘rules’ These rules are defined in separate files. 
YAML-inspired syntax, but not really YAML 
A Rule: 
gif_basic: 
    signature/s3                : "GIF" 
    version/s3                  : ["89a","87a"]       
    logical_screen_width/I2     : 32 
    logical_screen_height/I2    : 52 
    global_color_table_flag/b1  : 1  
    color_resolution/b3         : 7 
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Primitive Definitions II 

Primitives are given by name,  followed with a type and a length, 
and then possible values for that primitive to take. 
These values are automatically used in fuzzing. 
Type is one of: 
 I: Big Endian Integer (that’s a capital i) 
 i: Little Endian Integer 
 S: Symbol 
 s: String  
 B: Binary 
 b: Bitfield 

Lengths are in bytes, except for bitfields, where they are in 
bits. 
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Rule Definitions 
The structures of generated inputs  are composed  
from ‘rules’ These rules are defined in separate files. 
YAML-inspired syntax, but not really YAML 
A Rule: 
gif_basic: 
    signature/s3                : "GIF" 
    version/s3                  : ["89a","87a"]       
    logical_screen_width/I2     : 32 
    logical_screen_height/I2    : 52 
    global_color_table_flag/b1  : 1  
    color_resolution/b3         : 7 
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Fuzzing Combinations 
Fields like   version/s3: ["89a","87a"]  with multiple values 
are automatically fuzzed by the fuzzing engine.   
 

Output is generated such that every value given for a field is 
present at least once in the output. One field per output is 
‘fuzzed’; that field is iterated over. All others take their leftmost 
value. 
Fuzzing is not combinatorial, however: 
  version/s3: [“A",“B"] 
   width/I2: [1, 2, 3]

produces 4 combinations: 
     (“A”, 1) (“B”,1) (“A”, 2) (“A”, 3) 
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• We can also have fields that we want to fuzz as a 
“combination”. i.e. This Rule:  

24

CombinationMultiFieldFuzz:
    value1%combo1/s1: [“A” , “B”] 
    value2%combo1/I1: [1, 2, 3] 

Produces the following 6 combinations: 
(“A”, 1) (“B”,1) (“A”, 2) (“B”, 2”) (“A”, 3) (“B”, 3) 
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Response Definitions 
Responses are matched against response rules. These are similar 
to the generation rules. Specifying a value indicates that part of 
the response should match that value. 
_  is “Don’t care”, and matches anything 
 
Can also capture values using $() syntax: 
recv_tcp: 
 src/i2  : _ 
 dest/i2 : _ 
 seqno/I4: $(sequence_number) 
Captured values are available as variables. 
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Response Definitions II - Regexes 
Response Definitions can include simplified regexps for string 
matching 
 
HTTP: 
  response: [“%s %d %s¥r¥n”,  $(version), $(code),   
                             $(status)”] 

 
These are powered by Oniguruma; the results of the scanf –style 
capture directives get saved to corresponding variables.’ 
 
Real regexes can also be used for more power (i.e. non-scanf-
style). 
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Response Definitions III 
Primitives in responses can be marked with an asterisk ‘*’ to 
indicate 0 or more of the primitive should be matched. 
Useful for matching higher-level patterns: 
HTTP: 
    header-line/s*: “%s¥r¥n” 
    cache-expires/s: “EXPIRES blah blah ¥r¥n” 
    header-line/s*: “%s¥r¥n” 
    done/s: “¥r¥n” 
 
This matches an expires line at any point in the header 
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Variables 
tcp: 
 srcport/I2: 0 
 dstport/I2: $tcp_dst_port 
 … 
 

The syntax ‘$tcp_dst_port ‘  inserts the value of a variable 
named ‘tcp_dst_port’.   
 
Variables can be set by the user initially, captured from incoming 
packets, or calculated by macro statements. 
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Macros 
ipv4[6]: 
  version/b4       : 4  
  header_length/b4 : [($ilength(<ipv4>) -$ilength(<payload>)) / 4, 0, 15] 
  dscp_or_tos/S    : [ <tos>, <dscp> ] 
  packet_length/I2 : [$ilength(<ipv4>), 1, 16, 32] 
 

Various macros are provided, e.g. $ilength(<symbol>) 
Arithmetic permitted – header_length can be the length of the 
whole ipv4 block, minus the length of the payload block, divided 
by 4. 
 
Other macros include $tcp_checksum, $md5, $repeatA 
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Macro Example 
void Macros::macro_irandom(Field *f, Var &out, 
     int argc, Var *argv) 
{ 
 int ret = rand(); 
 out.setInteger(ret); 
} 

The macro interface is still work-in-progress. 
Var types hold values used during generation; the result of a 
macro can be set by calling ‘setInteger’, ‘setString’, etc, on 
the ‘out’ argument of the macro.  
 
argv is an array of argc pointers to Vars. 
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Backends 
How the generated data is actually used. 
 
Currently Provided: 
Raw-Ethernet  IPv4  IPv6  UDP  TCP  HTTP  File 
 
Lower level network backends use raw sockets and libpcap 
 
Higher level network backends  use OS provided sockets 
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Multiple Backends 
Backends can be named 
 command: ether/ipv4/tcp 
 data: ether/ipv4/tcp(tcp_dst_port: 20)� 
 
Packets can be sent to any named backend 
 send(command): ftp/login(uname: ”foo”, pword: “bar”) 
 send(data): ftp/payload(data: “hogehogehoge”) 
Sent to default(first) backend if no name specified. 
 
Connection-based backends automatically opened on first send 
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Monitoring 
• Currently an optional  ‘heartbeat’ can be defined 

 
• Detects when the target stops responding 

 
• Usually, ICMP or ICMPv6 Echo Requests (pings) 

 
• Can specify heartbeat interval (once every n packets) 
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HeartBeat 
heart_beat { 
  group { 
    send: ipv4/icmp(icmp_echo_req) 
    recv: recv_ipv4/recv_icmp(recv_icmp_echo) 
  } 
} 
 

The monitoring heartbeat is specified like any other fuzzing rule.  
 
Heartbeat can have a different backend. 
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Example – IPv6 Fuzzing 
ipv6: 
    version/b4  : 6 
    trafficclass/b8 : 0 
    flowlabel/b20 : 0 
    packet_length/I2: $ilength(<payload>) + $ilength(<headers>) 
    next_header/I1 : $id(<next>) 
    hoplimit/I1 : [127, 255, 0] 
    src_address/B16 : $ipv6_addr($ipv6_src) 
    dest_address/B16  : $ipv6_addr($ipv6_dst) 
    headers/S  : <next_sublayer> 
    payload/S  : <next_layer> 

 
Generates an IPv6 header, and continues into the extension headers. 
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IPv6 Fuzzing - contd 
For IPv6, instead of fuzzing values we fuzz structures - 
Various combinations of chains of extension headers and 
associated options: 

send: ipv6(hopbyhop(home_address/quick_start)/routing/esp)/tcp 
send: ipv6(hopbyhop(home_address/endpoint_ID)/routing/esp)/tcp 
send: ipv6(hopbyhop(home_address/tunnel_limit)/routing/esp)/tcp 
send: ipv6(hopbyhop(home_address/router_alert)/routing/esp)/tcp 

Of course, these are generated by a script. 
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Example: TCP Fuzzing 
tcp[0x6]: 
 srcport/I2: 0 
 dest/I2: $tcp_dst_port 
 seqno/I4: 0 
 ackno/I4: 0 
 dataoff/b4: ($ilength($<opts>) / 4) + 5 
 reserved/b4: 0 
 cwr/b1: 0 
 ece/b1: 0 
 urg/b1: 0 
 ack/b1: 0 
… etc. 
 

TCP control bits can be set using overwrites in the scenario file. 
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TCP Scenario Excerpt 
group{ 
send: tcp(seqno:1747422, srcport: 6295, syn: 1, cwr:1, ece:1) 
recv: recv_tcp 
send: tcp(seqno:$recv_ack, srcport: 6295, ack: 1, ackno: $recv_seq + 1 , 
cwr:1, ece:1) 
recv: recv_tcp 
send: tcp(seqno:1747423, srcport: 6295,cwr:1, ece:1)/tcp_payload 
recv: recv_tcp 
send: tcp(seqno:1747449, srcport: 6295,fin: 1, cwr:1, ece:1)/tcp_payload 
} 
 

Scenario file uses overwrites to control the higher-level 
behaviour to comply with the TCP protocol. 
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Demo One – IPv6 

• Quick ipv6 fuzzing demo against Windows 7 
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Demo Two: Router(a) 

• DoS 
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Limitations 
• Speed 

– Research quality code 
• Expressiveness 

– Flow Control in scenarios 
 

Small set of backends at present 
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Future Work 
• Speediness 
• Flow Control 
• More Backends 
• Macro programming for everyone 

– Scripting language 
• More sophisticated monitoring 

– Likely requires cooperation with vendors for embedded 
devices 

– Develop a protocol? 
• More file-oriented fuzzing support (spawning processes to 

open generated files, etc) 
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