

Fourteenforty Research Institute, Inc.

2

Grape
A Generative Fuzzer

– Inspired by Scapy , Sulley, PeachFuzz, et cetera

– Generalized Fuzzing: can fuzz packets, files, higher level

interactions

– Handles responses: can interact with stateful protocols

Fourteenforty Research Institute, Inc.

3

Fourteenforty Research Institute, Inc.

Fuzzing (Very Much In Brief)
• Testing a system by subjecting it to malformed inputs
• Broadly, two types

– Mutating - Take existing inputs, tweak them
– Random Bit Flipping
– Field alteration (requires knowledge of fuzzed

format)
– Input samples important

– Generative - Use set of rules to create new inputs
– Also requires knowledge of fuzzed format
– Rules determine coverage

5

Fourteenforty Research Institute, Inc.

Fuzzing steps

• Find or define attack surface

• Generate Input Cases

• Feed Them To Target

• Monitor For Crashes / Unusual Behaviour

• Collect & Analyse Crash Data

6

Fourteenforty Research Institute, Inc.

Fuzzers - Generality
• Most fuzzers are quite specific

– Fuzzers for various protocols
• SNMP/DHCP/ICMP/etc

– Fuzzers for specific file formats
• PDF/HTML/SWF/etc

Scapy is an example of a more general fuzzing system, but still

network focused.

7

Fourteenforty Research Institute, Inc.

Fuzzers - Smartness
• Fuzzers vary in ‘randomness’
• Most fuzzers are smart

– Requires understanding the format of the input being
fuzzed

– Mutate/Generate input such that it’s likely to break the
system (length fields, etc)

Generally: Try to imagine how someone would have messed
up trying to implement the code parsing the input you’re
attacking.

8

Fourteenforty Research Institute, Inc.

Statefulness

• Sometimes protocols requiring keeping state
• A particular problem for generative fuzzers (mutative fuzzers

can usually playback their inputs)
• Need to incorporate responses from target into future fuzz

cases
• Examples

– Fuzzing an FTP server’s command line parsing
– Fuzzing a TCP implementation (sequence and

acknowledgement numbers)

9

Fourteenforty Research Institute, Inc.

Grape
• Generative Fuzzer
• Handles responses for stateful fuzzing
• Rules for generation written in a YAML-like dialect
• Compose rules into fuzz scenarios with Scapy-like syntax
• Pluggable backends – output can be to file, network, etc
• Sensible default low-level protocols – fuzz HTTP without

fuzzing (or thinking about) IPv4
• Heartbeat-based monitoring
• No crash data collection yet

10

Fourteenforty Research Institute, Inc.

11

Scenario

Config

Heartbeat

Fuzzing

Group

Group

Fourteenforty Research Institute, Inc.

12

Scenario

Config

Heartbeat

Fuzzing

Group

Group

Configuration for this
scenario.
E.g. setting a path and
low layer.

Example:
config {
rule_path: http/
low_layer: ether/ipv4/tcp

}

Fourteenforty Research Institute, Inc.

13

Scenario

Config

Heartbeat

Fuzzing

Group

Group

Monitor the target with a
“heartbeat”

Example:
heart_beat {
group {

 send: http_head
 recv: recv_http_head
}

}

Fourteenforty Research Institute, Inc.

Simple Interactions
send: send this to (network/ a file)

recv: Receive this response (network only for now)

recv rules match the incoming data with certain rules
–If no match, skips to next fuzzing fuzzing case

Note: no ‘real’ flow control
–Use several groups, instead

18

Fourteenforty Research Institute, Inc.

Packet Structure Description
Here’s where we took inspiration from Scapy
There’s ‘layers’

ether/ipv4/tcp(syn:1)/payload(data:”AAAAA”)

‘/’ separates layers, parentheses allow overwriting of named
values inside the ‘rules’
‘sublayers’ can be placed in parentheses

ether/ipv6(routing(type:0))/udp/random(50)

19

Fourteenforty Research Institute, Inc.

Rule Definitions
The structures of generated inputs are composed
from ‘rules’ These rules are defined in separate files.
YAML-inspired syntax, but not really YAML
A Rule:
gif_basic:
 signature/s3 : "GIF"
 version/s3 : ["89a","87a"]
 logical_screen_width/I2 : 32
 logical_screen_height/I2 : 52
 global_color_table_flag/b1 : 1
 color_resolution/b3 : 7

20

Fourteenforty Research Institute, Inc.

Primitive Definitions II

Primitives are given by name, followed with a type and a length,
and then possible values for that primitive to take.
These values are automatically used in fuzzing.
Type is one of:
 I: Big Endian Integer (that’s a capital i)
 i: Little Endian Integer
 S: Symbol
 s: String
 B: Binary
 b: Bitfield

Lengths are in bytes, except for bitfields, where they are in
bits.

21

version/s3: ["89a","87a"]

Fourteenforty Research Institute, Inc.

Rule Definitions
The structures of generated inputs are composed
from ‘rules’ These rules are defined in separate files.
YAML-inspired syntax, but not really YAML
A Rule:
gif_basic:
 signature/s3 : "GIF"
 version/s3 : ["89a","87a"]
 logical_screen_width/I2 : 32
 logical_screen_height/I2 : 52
 global_color_table_flag/b1 : 1
 color_resolution/b3 : 7

22

Fourteenforty Research Institute, Inc.

Fuzzing Combinations
Fields like version/s3: ["89a","87a"] with multiple values
are automatically fuzzed by the fuzzing engine.

Output is generated such that every value given for a field is
present at least once in the output. One field per output is
‘fuzzed’; that field is iterated over. All others take their leftmost
value.
Fuzzing is not combinatorial, however:
 version/s3: [“A",“B"]
 width/I2: [1, 2, 3]

produces 4 combinations:
 (“A”, 1) (“B”,1) (“A”, 2) (“A”, 3)

23

Fourteenforty Research Institute, Inc.

• We can also have fields that we want to fuzz as a
“combination”. i.e. This Rule:

24

CombinationMultiFieldFuzz:
 value1%combo1/s1: [“A” , “B”]
 value2%combo1/I1: [1, 2, 3]

Produces the following 6 combinations:
(“A”, 1) (“B”,1) (“A”, 2) (“B”, 2”) (“A”, 3) (“B”, 3)

Fourteenforty Research Institute, Inc.

Response Definitions
Responses are matched against response rules. These are similar
to the generation rules. Specifying a value indicates that part of
the response should match that value.
_ is “Don’t care”, and matches anything

Can also capture values using $() syntax:
recv_tcp:
 src/i2 : _
 dest/i2 : _
 seqno/I4: $(sequence_number)
Captured values are available as variables.

25

Fourteenforty Research Institute, Inc.

Response Definitions II - Regexes
Response Definitions can include simplified regexps for string
matching

HTTP:
 response: [“%s %d %s¥r¥n”, $(version), $(code),
 $(status)”]

These are powered by Oniguruma; the results of the scanf –style
capture directives get saved to corresponding variables.’

Real regexes can also be used for more power (i.e. non-scanf-
style).

26

Fourteenforty Research Institute, Inc.

Response Definitions III
Primitives in responses can be marked with an asterisk ‘*’ to
indicate 0 or more of the primitive should be matched.
Useful for matching higher-level patterns:
HTTP:
 header-line/s*: “%s¥r¥n”
 cache-expires/s: “EXPIRES blah blah ¥r¥n”
 header-line/s*: “%s¥r¥n”
 done/s: “¥r¥n”

This matches an expires line at any point in the header

27

Fourteenforty Research Institute, Inc.

Variables
tcp:
 srcport/I2: 0
 dstport/I2: $tcp_dst_port
 …

The syntax ‘$tcp_dst_port ‘ inserts the value of a variable
named ‘tcp_dst_port’.

Variables can be set by the user initially, captured from incoming
packets, or calculated by macro statements.

28

Fourteenforty Research Institute, Inc.

29

Fourteenforty Research Institute, Inc.

Macros
ipv4[6]:
 version/b4 : 4
 header_length/b4 : [($ilength(<ipv4>) -$ilength(<payload>)) / 4, 0, 15]
 dscp_or_tos/S : [<tos>, <dscp>]
 packet_length/I2 : [$ilength(<ipv4>), 1, 16, 32]

Various macros are provided, e.g. $ilength(<symbol>)
Arithmetic permitted – header_length can be the length of the
whole ipv4 block, minus the length of the payload block, divided
by 4.

Other macros include $tcp_checksum, $md5, $repeatA

30

Fourteenforty Research Institute, Inc.

Macro Example
void Macros::macro_irandom(Field *f, Var &out,
 int argc, Var *argv)
{
 int ret = rand();
 out.setInteger(ret);
}

The macro interface is still work-in-progress.
Var types hold values used during generation; the result of a
macro can be set by calling ‘setInteger’, ‘setString’, etc, on
the ‘out’ argument of the macro.

argv is an array of argc pointers to Vars.

31

Fourteenforty Research Institute, Inc.

Backends
How the generated data is actually used.

Currently Provided:
Raw-Ethernet IPv4 IPv6 UDP TCP HTTP File

Lower level network backends use raw sockets and libpcap

Higher level network backends use OS provided sockets

32

Fourteenforty Research Institute, Inc.

Multiple Backends
Backends can be named
 command: ether/ipv4/tcp
 data: ether/ipv4/tcp(tcp_dst_port: 20)�

Packets can be sent to any named backend
 send(command): ftp/login(uname: ”foo”, pword: “bar”)
 send(data): ftp/payload(data: “hogehogehoge”)
Sent to default(first) backend if no name specified.

Connection-based backends automatically opened on first send

33

Fourteenforty Research Institute, Inc.

Monitoring
• Currently an optional ‘heartbeat’ can be defined

• Detects when the target stops responding

• Usually, ICMP or ICMPv6 Echo Requests (pings)

• Can specify heartbeat interval (once every n packets)

34

Fourteenforty Research Institute, Inc.

HeartBeat
heart_beat {
 group {
 send: ipv4/icmp(icmp_echo_req)
 recv: recv_ipv4/recv_icmp(recv_icmp_echo)
 }
}

The monitoring heartbeat is specified like any other fuzzing rule.

Heartbeat can have a different backend.

35

Fourteenforty Research Institute, Inc.

Example – IPv6 Fuzzing
ipv6:
 version/b4 : 6
 trafficclass/b8 : 0
 flowlabel/b20 : 0
 packet_length/I2: $ilength(<payload>) + $ilength(<headers>)
 next_header/I1 : $id(<next>)
 hoplimit/I1 : [127, 255, 0]
 src_address/B16 : $ipv6_addr($ipv6_src)
 dest_address/B16 : $ipv6_addr($ipv6_dst)
 headers/S : <next_sublayer>
 payload/S : <next_layer>

Generates an IPv6 header, and continues into the extension headers.

36

Fourteenforty Research Institute, Inc.

IPv6 Fuzzing - contd
For IPv6, instead of fuzzing values we fuzz structures -
Various combinations of chains of extension headers and
associated options:

send: ipv6(hopbyhop(home_address/quick_start)/routing/esp)/tcp
send: ipv6(hopbyhop(home_address/endpoint_ID)/routing/esp)/tcp
send: ipv6(hopbyhop(home_address/tunnel_limit)/routing/esp)/tcp
send: ipv6(hopbyhop(home_address/router_alert)/routing/esp)/tcp

Of course, these are generated by a script.

37

Fourteenforty Research Institute, Inc.

Example: TCP Fuzzing
tcp[0x6]:
 srcport/I2: 0
 dest/I2: $tcp_dst_port
 seqno/I4: 0
 ackno/I4: 0
 dataoff/b4: ($ilength($<opts>) / 4) + 5
 reserved/b4: 0
 cwr/b1: 0
 ece/b1: 0
 urg/b1: 0
 ack/b1: 0
… etc.

TCP control bits can be set using overwrites in the scenario file.
 38

Fourteenforty Research Institute, Inc.

TCP Scenario Excerpt
group{
send: tcp(seqno:1747422, srcport: 6295, syn: 1, cwr:1, ece:1)
recv: recv_tcp
send: tcp(seqno:$recv_ack, srcport: 6295, ack: 1, ackno: $recv_seq + 1 ,
cwr:1, ece:1)
recv: recv_tcp
send: tcp(seqno:1747423, srcport: 6295,cwr:1, ece:1)/tcp_payload
recv: recv_tcp
send: tcp(seqno:1747449, srcport: 6295,fin: 1, cwr:1, ece:1)/tcp_payload
}

Scenario file uses overwrites to control the higher-level
behaviour to comply with the TCP protocol.

39

Fourteenforty Research Institute, Inc.

Demo One – IPv6

• Quick ipv6 fuzzing demo against Windows 7

40

Fourteenforty Research Institute, Inc.

Demo Two: Router(a)

• DoS

41

Fourteenforty Research Institute, Inc.

Limitations
• Speed

– Research quality code
• Expressiveness

– Flow Control in scenarios

Small set of backends at present

42

Fourteenforty Research Institute, Inc.

Future Work
• Speediness
• Flow Control
• More Backends
• Macro programming for everyone

– Scripting language
• More sophisticated monitoring

– Likely requires cooperation with vendors for embedded
devices

– Develop a protocol?
• More file-oriented fuzzing support (spawning processes to

open generated files, etc)

43

