FFRI
N\

Appearances are deceiving: Novel offensive
techniques in Windows 10/11 on ARM

®R\etF FR I35+

https://www.ffri.jp

About me

Joined FFRI Security, Inc. after graduating.

Working as a research engineer at the basic research lab.

Recently reverse-engineering compatibility technology of Windows on ARM and M1 Mac.
Black Hat EU 2020 Briefings Speaker

blackhat |

DECEMBER 2 - 10,
EUEDPE 2= E =l

VIRTUAL EVENT

ATTEND * TRAININGS BRIEFINGS * ARSENAL~ FEATURES~ SCHEDULE BUSINESSHALL~ SPONSORS ~ PROPOSALS ~

All times are Greenwich Mean Time (UTC +0h)
.| ALL SESSIONS

Jaek=in-the=Cache:’A’'New Code injection Technique through Maodifying
| SPEAKERS X86-to-ARM Translation Cache

wa | Research Engineer, FFRI Security, Inc.

Hiromitsu Oshiba | Research Engineer, FFRI Security, Inc.
Date: Wednesday, December 9 | 10:20am-10:50am
Format: 30-Minute Briefings

Reverse Engineering

https://www.blackhat.com/eu-20/briefings/schedule/index.html#jack-in-the-cache-a-new-
code-injection-technique-through-modifying-x-to-arm-translation-cache-21324

https://www.blackhat.com/eu-20/briefings/schedule/index.html#jack-in-the-cache-a-new-code-injection-technique-through-modifying-x-to-arm-translation-cache-21324
https://github.com/kohnakagawa

The Rise of ARM FERY,

M1 Mac

Surface Pro X Windows on ARM

SAVE UP TO $500.00

Surface Pro X

With Microsoft SQ® 1 and new
blazing-fast LTE connectivity,® o
USB-C® ports and a stunning, v

More

P diaraa T A L ¥ FEESURS RS S

Surface Pro X — Ultra-thin & Always Connected 2-
in-1 Laptop — Microsoft Surface

MacBook Pro 13-inch - Apple

ARM Based Laptops are
being released one after another.

% ARM notation in accordance with Microsoft's Documentation Standards 3

https://www.apple.com/macbook-pro-13/
https://www.microsoft.com/en-us/p/surface-pro-x/8qg3bmrhnwhk?activetab=pivot%3aoverviewtab

Why an ARM Based Laptop? FFRL

ARM has superior power usage related functionality.
Many have a longer battery life compared to previous devices:%.
 Always Connected PCs, laptops that can be used like a smartphone
In the new normal, work will not be restricted by time of day or location
* Long battery life is crucial.

ARM based laptops will continue to rise in demand.

XWindows on ARM Benchmarked > Impressions, Superb Battery Life, What Needs to Improve | TechSpot 4

https://www.techspot.com/review/1599-windows-on-arm-performance/page4.html

The Application Compatibility Problem

FFRI
N\

int mean(int a, int
return (a + b) / 2;

w8, w8, 1sr 31

We cannot use existing software for x86/x64
on ARM-based laptops.

The Solution to The Incompatibility Problem &

Binary Translation and Caching Mechanism
Translate x86/x64 to ARM64

The translation is resource-intensive, a caching mechanism is used for
acceleration.

 Cache the execution result as a file and reuse in subsequent executions.

x86/x64 ARMo64

add w8,
add w9,

lea eax, [ecx + edx]
cdq

sub eax, edx
sar eax, 1

asr wo, w

The Solution to The Incompatibility Problem X

Hybrid Binary

Maintain compatibility with current binary while allowing code execution
at fast speeds close to native code execution.

Execute ARM 64
code at execution

Looks like

x86/x64 binary

The Solution to The Incompatibility Problem X

Fat Binary
A binary that combines multiple binaries for various architectures.
* Allows using a single binary for multiple uses or multiple platforms.

x86/x64 Binary

Select 1 out of the 2 for
execution.

Windows and macOS Implementation FERL

Compatibility Windows macOS Implementation
Technology Implementation

Binary Translation and XTAJIT and XtaCache Rosetta 2
Caching Mechanism

Hybrid Binary CHPE-ARMG64EC N/A

Fat Binary ARM64X Universal 2

Both Windows on ARM and M1 Mac have implemented
compatibility technologies.

Problem: Malicious Usage of Compatibility Technologies "%

There have been cases where compatibility technologies have been
used for malicious intent.

Ex: Application Shimming

The possibility of malicious usage of compatibility technologies
implemented in Windows on ARM and M1 Mac?

-> As far as we know, not even discussed.

Details of the compatibility technologies aren’t being disclosed to
begin with.

Information disclosed by Microsoft or Apple is very limited and there aren’t that
many reverse engineering findings neither.

10

Purpose of this research FERL

To discover attack methods leveraging the malicious use of the newly
implemented compatibility technologies.

Specifically...

* Details of the compatibility technologies. (3% Including acceleration technologies
often included in compatibility technologies.)

 Malicious use of such technologies.

To discover/disclose the above 2 aims.

We hope that this research will lead to increased security
research of compatibility technologies.

11

Compatibility technologies examined FFRL

Compatibility Windows macOS Implementation
Technology Implementation

Binary Translation and
Caching Mechanism

Hybrid Binary

Fat Binary

XTAJIT and XtaCache

CHPE-ARMG4EC

\QRM 64X /

Rosetta 2

N/A

Universal 2

3 Compatibility technologies implemented in
Windows on ARM are the subject.

12

Compatibility technologies examined FFRL

Regarding macOS...

macOS Implementation

Rosetta 2

N/A

Universal 2

13

Project Champollion FERL

Repository of macOS Rosetta 2 related reverse engineering results.

EH FFRI/ ProjectChampollion ' Public

<{> Code () Issues 1 {0 Pull requests

https://github.com/FFRI/ProjectChampollion

A Reverse-engineering Rosetta 2 Part 1: Analyzing AoT files and the runtime (ffri.github.io)
121 points by my123 7 months ago | hide | past | favorite | 17 comments

https://news.ycombinator.com/item?id=26346980

14

https://github.com/FFRI/ProjectChampollion
https://news.ycombinator.com/item?id=26346980

Compatibility technologies examined

N\
Binary Translation and Caching Mechanism
(XTAJIT and XtaCache)

\

‘ Hybrid Binary (CHPE+ARM64EC)
[
‘ Fat Binary (ARM64X)

/

15

Compatibility technologies examined

Binary Translation and Caching Mechanism
(XTAJIT and XtaCache)

16

Binary translation and Caching Mechanism in Windows on ARM ™

Bina ry Translation: XTAJIT (% XTA is suspected an acronym for X86-To-ARM)
JIT Binary translation of x86/x64 code to ARM 64 code upon execution.

» Windows 10 Insider Preview and Windows 11 also support x64

Caching Mechanism: XtaCache

Translation results are saved as a XTA Cache File and reused in subsequent re-
executions.

 Decrease JIT binary translation overhead and accelerate execution of application after the
2nd time.

17

X86/x64 Emulation

FFRI
N\

EXE and DLLs related to x86/x64 emulation
« xtajit.dll/xtajit64.dll: x86/x64 emulator DLL
« xtac.exe/xtac64.exe: Compiler to create XTA Cache File

« XtaCache.exe: Management service of XTA Cache File
PC > Local Disk (C:) > Windows > System32

® = o B-PA@-hl)
v B xtabase.dll XtaCache
8 xtac.exe tf_ l:‘XUJELh
B xtac64.exe - EX(DEE@JJ
R XtaCache.exe
B xtajitdl Ck | |
XTA binary translation and caching
B xtajito4.dil service

18

X86/x64 Emulation Flow FFRY

/" XTA Cache File Directory I X Execution flow when using XTA Cache File
ACCESSCHK.EXE.95...mp.1,jc

XtaCache.exe

X86_APP.EXE.983D...mp.1c

\ /

1. Notification of x86
image loaded (ALPC)

19

X86/x64 Emulation Flow FFRY

ﬂ(TA Cache File Directory \
ACCESSCHK.EXE.95...mp.1,jc

X86_APP.EXE.983D...mp.1c

\ /

1. Notification of x86
image loaded (ALPC)

> Execution flow when using XTA Cache File

2. Search
XtaCache.exe

20

X86/x64 Emulation Flow FFRY

/"XTA Cache File Directory "\ XExecution flow when using XTA Cache File
ACCESSCHK.EXE.95...mp.1.jc

m . 2. Search
o ﬁ XtaCache.exe

X86_APP.EXE.983D...mp.1c ‘

= _/

1. Notification of x86
image loaded (ALPC)

21

X86/x64 Emulation Flow FFRY

ﬂ(TA Cache File Directory \
ACCESSCHK.EXE.95...mp.1.jc

X86_APP.EXE.983D...mp.1c

= _/

1. Notification of x86
image loaded (ALPC)

> Execution flow when using XTA Cache File

2. Search
XtaCache.exe

3. Memory map
to target process

I x86_app.exe . xtajit.dll - X86_APP.EXE.983D...mp.1.jc .

22

X86/x64 Emulation Flow FFRY

ﬂ(TA Cache File Directory \
ACCESSCHK.EXE.95...mp.1.jc

X86_APP.EXE.983D...mp.1c

= _/

1. Notification of x86
image loaded (ALPC)

> Execution flow when using XTA Cache File

2. Search
XtaCache.exe

3. Memory map
to target process

I x86_app.exe . xtajit.dll - X86_APP.EXE.983D...mp.1.jc .

4. Transfer execution control
g 23

XTA Cache File FERY,

XTA Cache File exists in %SystemRoot%¥XtaCache
XTA Cache File is created for each x86 and x64 PE

BB > PC > local Disk (C:) > Windows > XtaCache

o “AE
B KERNELAPPCORE.DLL.CCBA58AB61E42B678D3419A710E4961 1.E00000BEB58FCF2C8306A5F5175537E8.x64.mp.1.jc

B KERNEL32.DLL.7A2AAOE9050C3E6904FBAEB94EF3468E.25CB21E7A911E32978ABB388E1EBA467.Xx64.m p.3.jc

B KERNEL32.DLL.63C1A3B58DD5COA733EB838F5C7CF07D.DDEEC7202859318755E42D071DBE493 Bx86.mp.5.jc

Only the XtaCache service can access these files by default.

* But this settings can be changed by administrator access privileges.

24

XTA Cache File Structure FFRY

Refer to Black Hat EU 2020 presentation material for more details about the file format

Parser for XTA Cache File and analysis tool for contained ARM64 code are aIready public

ER32.DLL.B762FE91071D23DA8720

H FFRI / XtaTools

<> Code Issues Pull requ

¥ main ~ ¥ 1branch 0tags -’1...|,-|,r .“;I

ﬁi‘ kohnakagawa Fix README

https://github.com/FFRI/XtaTools https://github.com/FFRI/radare?

We will only cover what is necessary to understand

this research in this presentation .

https://i.blackhat.com/eu-20/Wednesday/eu-20-Nakagawa-Jack-In-The-Cache-A-New-Code-Injection-Technique-Through-Modifying-X86-To-Arm-Translation-Cache.pdf
https://github.com/FFRI/XtaTools
https://github.com/FFRI/radare2

XTA Cache File Structure FERY,

Header Contains Signature / Offset for following block etc.

BLCK Stub Includes code for returning to the emulator DLL

Includes x86/x64 to ARM64 translated code

Translated code

/ I\I
|)

N

Repeat.as many times as v Not obfuscated , raw ARM
cache file updates movz

MoV N 64 assembly

Address pairs x86/x64 and ARM64 code RVA address pair

NT path name NT path name for x86/x64 PE

26

XTA Cache File Structure

FFRI
N\

What happens when we modify

this ARM64 code ?

mov
movz
mov

)

Not obfuscated , raw
ARM 64 assembly

27

Execution flow when XTA cache file is modified

FFRI
N\

ﬂ(TA Cache File Directory \

ACCEﬂ.EXEBS...mp.UC
X86 983D...mp.1c

1. Notification of x86

image loaded (ALPC)

I x86_app.exe . xtajit.dll
4. Transfer execution control
g 28

2. Search
XtaCache.exe

3. Memory map
to target process.

X86)83D...mp.1.jc .

Execution flow when XTA cache file is modified FFRY

XTA Cache File integrity isn’t checked
and is mapped to the target process memory,

then it is executed.
XTA Cache Hijacking

I x86_app.exe . xtajit.dll X86)83D...mp.1,jc -
'4. Transfer execution control '

29

XTA Cache Hijacking Characteristics FERL

Code injection method with 3 characteristics
« Difficult to detect: Can be done without getting the handle for the target process.

— The modified XTA Cache File's code gets executed through the normal emulation
process.

« Difficult to trace: No evidence in the original x86/x64 PE file.
— If we do not know the XTA Cache File, it is hard to trace.
* Persistent: The code injection result becomes persistent as a file.

— The same code injection will get executed after a reboot if the same application is
executed.

In the MITRE ATT&CK ...

This Technique enables Defense EvasionCredential Access-Persistence

However, it does require administrator privilege to use...

30

XTA Cache Hijacking Characteristics FERL

Code injection method with 3 characteristics
« Difficult to detect: Can be done without getting the handle for the target process.

— The modified XTA Cache File's code gets executed through the normal emulation
process.

« Difficult to trace: No evidence of the original x86/x64 PE file.
- If we do not know the XTA Cache File, it is hard to trace.

* Persistent: The code injection res

Is it worth to use this technique by

— The same code injection will ge gaining administrator privilege ?

executed.

In the MITRE ATT&CK ...

This Technique enables Defense Evasion+Credential AccessPersistence

However, it does require administrator privilege to use...

31

XTA Cache Hijacking Characteristics FERL

Unique characteristics of this method

Invisible Execution

 Can execute a different code while hiding its execution at the x86/x64 code level.

Example of Invisible Execution: Invisible APl hooking
« When code hooking, evidence of the hook are left.

By using XTA Cache Hijacking, we can code hook without leaving this
evidence at the x86/x64 code level.

32

™5

® wARfER -

% @ #RbER - 0O B

&« S v 4 | Wi.)> XtaC..

| 5727+97
| &%
B UNBCL.DLL.90DE2AA4ABFF66A90BA 165A69CESABDB. 14DDC 172D1FBOA1033490DBCD02108C

m] X

OF 7 © - . N B UNBCL.DLL.CE6552977FB902963A7C142064BD19BB. 14DDC172D1FBOA 1033490DBCD021D8CB.
I URLMON.DLL.6E4748D49A111D0393C8391F 2E47BD7A.CCE2FF813765365C077865A69087FFA4

€ 5 v A M < InvisibleAPL. > hooked
I URLMON.DLL.38289EE4AF3BF 173309A518540F 8B4CE. AGA4656B 1456A8B8856666A9A6F C28A

| = [USBPERF.DLL.F932732BC3AB4A9BBBIFEE067BB4ECED. 78407D064AA611FABSOFOASI3E085805
[USER32.DLL.B13D03018DD8BI2A6F48110DSAB4DEA7.31468294266C99DBI35B35F 6F7T6A0DF7.X86... 2021/10/02 17:14 I USER32.DLLB13D03018DDBBI2AF 48110DSABADGAT,31468204266C99DB935B3SF6FTAODFT.

I USER32.DLL.B13D03018DD8BI2AGF48110DSABAD6AT.31468294266C99D8935B3SF 6F 76A0DF7.

< [N USER32.DLL.B13D03018DDBBI2A6F 48110DSABADEA7.31468294266C99D8935B35F6F 76A0DF 7.

I USER32.DLL.F33D6BES8FCD75C25F79431104C9711D.ADIS0ED48BO0IBF 20BE3SSDFAATOED1B.

[N USERENV.DLL.3DESFD31BBD796BA24210244EE3CFOF9.420CSFFO8C3FID41FCCCBBB240FAE4E

R 105KB | =1L

a 17:45
SNARSIL) - 2021/10/02 o

Countermeasures to XTA Cache Hijacking FFRL

Monitor access privilege changes of the XtaCache directory
To edit the XTA Cache File, we need to edit ACL of XtaCache directory.

* Because only the XtaCache service has access by default.

Usually changes to the access privileges to the XtaCache directory do not happen.

By adding this to the monitoring process, XTA Cache Hijacking can be traced.

» Defense is possible by limiting access privilege changes.

34

In Summary FEN

By analyzing XTAJIT and XTA Cache, revealed the following details
x86/x64 Emulation flow

XTA Cache File Structure (Only explained that the ARM64 code does not get
obfuscated and exists in raw format)

Proposed a new code injection method, called XTA Cache Hijacking
Hard to detect / Hard to trace / Persistent characteristics

Also, a unique characteristic of this attack , Invisible Execution

35

Compatibility technologies examined

Hybrid Binary (CHPE - ARMG4EC)

36

Hybrid Binary FERL

Compiled Hybrid PE (CHPE)
PE contains both x86 and ARM64 code

Example of CHPE:

 System DLLs under %SystemRoot%¥SyChpe32 (such as kernel32.dIl and
user32.dll)

» Office EXE for Windows on ARM

X86 Emulation uses CHPE system DLLs
* When there is no SyChpe32, system DLLS under SysWOW®64 are used instead.

37

CHPE Characteristics

FFRI
N\

Enable near ARM64 native performance while maintaining x86 PE

compatibility
CHPE acts as a x86 PE

» Surface analysis information is x86, disassembly result
of the export function is also x86

» export function is called export thunk
export thunk is the jump stub to the ARM64 code

e The actual function code is included into the ARM64 code
at the jump destination

JIT Binary translation only executes for export thunk

» No need to JIT binary translation against the whole function

x86 (export thunk of funcO0)

mov edi, edi
push ebp

jmp #funco

ARM®64 (actual code of func0)

#funco
stp x29,x30,[sp, #-0x10]!
mov x29, sp

» Therefore, performances is nearly equal to that of native ARM64 execution

— By CHPE-ing system DLL improve performance.

38

ARM®64 Emulation Compatible (ARMG64EC) FERL

ARMG64EC (>¢ABI-Build Architecture are collectively called like this)
Basically, a CHPE for x64
It has the following characteristics like CHPE:
* Includes both x64 and ARM64 code, x64 code is a jump stub to ARM64 code
* Allows for ARM64EC and x64 PE to be mixed and used in one process
The major difference with CHPE, the SDK is publicly available
* Third-party vendor can also use ARM64EC for ARM64 transition

i

June 28,2021 | Windows Developers

Announcing ARM64EC: Building Native and
Interoperable Apps for Windows 11 on ARM

https://blogs.windows.com/windowsdeveloper/2021/06/28/announcing-armé64ec-building-native-and-interoperable-apps-for-windows-11-on-arm/

42

https://blogs.windows.com/windowsdeveloper/2021/06/28/announcing-arm64ec-building-native-and-interoperable-apps-for-windows-11-on-arm/

CHPE-ARMG64EC API Calls FEN

There are the two following cases to call an external DLL from CHPE/ARMG64EC

Function calls for x86/x64 DLLs (CHPE/ARMG64EC -> x86/x64)
* It is executed by JIT Binary translation (or XTA cache File)

* Because of the difference in the conventions, calling convention changes happen

Function calls for CHPE/ARMG64EC DLLs (CHPE/ARMG64EC -> CHPE/ARMG64EC)

» Since the two calling conventions are the same, it seems that there is no need for changes
to the calling conventions, however...

44

CHPE/ARMG4EC API call flow

x86/x64
MessageBoxh
MOV RDI,RDI

1. call MessageBoxA PUSH REE
MOV REE,RSE

— _hexpthk PR me?

text HoE
JHMP #MessageBoxh
3. After JIT translation, if

necessary, jump to the

text function bod
ARM64
#MessageBoxd
2. Get export thunk Stp x19,x20, [sp, #local 20]!
address via IAT atp x21,x22, [sp, #local_10]
stp X29,x30, [sp, #-0x10]!

mov X29,3p

(CHPE or ARMG4EC) (CHPE or ARMG64EC) 4. Execute function body [

CHPE/ARMG4EC API call flow FERL

: : Calling Convention
Calling Convention changes (to
changes (to x86/x64) CHPE/ARMG64EC)

When calling the API via IAT, export thunk gets executed.

Therefore, calling convention conversions are needed.
48

Optimizing API calls FFRL

In many cases export thunk execution can be skipped.

Most of the code included in export thunk are for hot patching.

69e@3db@
69e@3db2
69eBd3db3
69e@3db5
69e@3dbb
69e@d3db7

8b T

55

8b ec

ad

214

e9 cd4 7b 8d 08

MOV .

PUSH

MOV ’

FOP

NOP

JMP #MessageBoxA@Elb

Unless the code is changed by code hooking, this code does nothing.

If execution can be skipped except in special cases, it will lead to faster API calls.

* It will allow the reducing of export thunk JIT translating and calling convention
conversions.

Can a function be called while skipping
the execution of export thunk ?

49

Hybrid Auxiliary IAT FERL
The other IAT that is in Hybrid Auxiliary IAT: CHPE< ARMG64EC

When necessary, Hybrid Auxiliary IAT can skip the execution of export thunk

__imp GetCurrentThreadIc XBEF[1]:

__hybrid auxiliary jat
140008000 a0 20 00 40 addr __impchk GetCurrentThreadId
01 00 00 00

The program loader refers to the contents of the IAT and changes the Hybrid
Auxiliary IAT at runtime. 2%

» When execution of export thunk is not needed, overwrites the Hybrid Auxiliary IAT entry
by the actual address of the jump destination of export thunk

* This allows function calls without going through export thunk

Xntdlll#LdrpFastForwardAuxiliarylat function does this 5

API calls via Hybrid Auxiliary IAT
x86/x64

MessageBoxh
MOV EDI,RDI
FUSH EBP
MoV REBP,ESF
EEF

call MessageBoxA

$MessageBoxh
IAT — text
ARM64
$MeasageBoxd
stp x15,x20, [sp, #local 20]!
stp xdl ,x22, [sp, #local 10]
stp X29 %30, [sp, #-0x10]!

Calls function via Hybrid
Auxiliary IAT entry

MoV X259, 38p

Two types of hooking available in CHPE-ARMG64EC

FFRI
N\

Classic IAT hooking

It works fine.

 Because it detects protection changes of IAT and changes the API call to refer to IAT

Hybrid Auxiliary IAT hooking
|IAT hooking by modifying the Hybrid Auxiliary IAT entry

» Unique because it allows hooking without modifying IAT entries

— Cannot detect if IAT is hooked by simply dumping IAT entries

52

Countermeasures: Hybrid Auxiliary IAT hooking™®

WindDbg extension command for analyzing Hybrid Auxiliary I1AT
https://github.com/FFRI/ProjectChameleon/tree/master/hybrid_aux_iat

B:824: ARMB4EC> !dump powershell

Image Base is @@087f{79dccooo

Image Import Descriptor is @@@a7ff79dc78224
Image Load Config Directory is @@@@7ff79dc76lbe
Module: OLE32.d1]1 @e887ffead5c0000

Name
PropVariantClear
CoUninitialize
CoTaskMemAlloc
CoInitialireEx
CoInitialize
CoCreatelnstance

TAT
ppaa7ffeadse27ca
ppaa7ffeadselate
paaa7ffeadselads
ppaa7ffeadselsan
gaaa7ffea3dasllos
ppaa7ffeadsellca

Aux TAT
ppaa7ffead9ceded
ppea7ffeadB8a%9aech
epea7ffeadBaecta
ppea7ffeadB8a94ca
gaaa7ffead7sb8ab
gapa7ffead96a7 7o

Aux IAT copy
Beea7ff79dcec228
Beea7ff79dcec328
aeea7ff79dcec268
aeea7ff79dcec5al
Beea7ff79dcbcled
geea7ff79dcec348

In Summary

FFRI
N\

Summarized CHPE+ARM®G64EC Characteristics and use cases.

Also pointed out the fact that there are many steps such as calling convention
conversions, JIT translations when calling an API.

Clarified what Hybrid Auxiliary AT is

Enables acceleration of API calls sometimes by skipping calling convention
conversions / JIT binary translations.

Proposed a new APl hooking method by modifying Hybrid Auxiliary IAT
Unique characteristic includes the inability to determine a hook based on IAT

56

Compatibility technologies examined

Fat Binary (ARM64X)

57

Fat binary for Windows on ARM

FFRI
N\

ARM®64X
Contains code for both ARM64 native and ARM64EC

* File format is the same as the traditional PE
— No new file format is prepared for ARM64X

« Surface information is ARM64

Examples of files provided as ARM64X
» System DLLs under %SystemRoot%System32

» Some of the System EXE such as cmd.exe or dllhost.exe

Surface information is
ARM64

ARMG64EC Binary

58

ARMG64X Characteristics FERY,

In case of EXE, the code that gets executed changes based on parent
process architecture

Parent process Executed code
architecture

x86 ARM64
x64 ARMG4EC
ARM64 ARM64

ARMG4EC ARMG4EC

59

ARMG64X Characteristics FFRY

Can be loaded from all processes for ARM64EC - x64 - ARM64
Surface information is ARM64, but can be loaded from both ARM64EC and x64 processes

* When loaded from x64 process (x64 Chrome browser)

ModLoad: e biEHe) , chrome.exe

ModLoad: @eea7ffd 59530000 @epa7ffd 8C iele ntdll.dll

ModLoad: A7tfd™ 87 A7 Td™ %) \Svs 2\ xtajited.dll
ModLoad: ee8887ffd 868 3 7 " B6adca88 : W T NDY (ERMNEL32.DLL
ModLoad: @@e87ffd B 85821000 : \WINDOWS\Sys J2\KERNELBASE .d11

» When ARM64 native process does the loading
(ARM64 Edge browser)
ModLoad:
ModLoad:
ModLoad:

ModLoad:
ModLoad: e8ea7ffd sfezopeo " 5f19cheo 1les (x86)\Microsoft\Ec

60

ARMG64X Characteristics

Doesn’t the DLL architectural information and
process architectural information have to match
to load usually ?

61

ARMG64X Characteristics FFRY

Analyze surface information of loaded DLL with WinDbg

a> 11mi ntdll @:816:ARMBAEC> !1mi ntdll
Loaded Module Info: [ntdll] Loaded Module Info: [ntdll]
Module: ntdll Module:

Base Address: Base Address:

Image Name: ntdll.dll Image MName:
Machine Type: 43628 (ARME4) Machine Type:
Time Stamp: : Time Stamp:
S5ize: Size:

CheckSum: 3ed2bd CheckSum:

L FJ % M G 3

Should be the same file but surface information
changed after the DLL was loaded ?
Only when it is used by ARM64EC (or x64) processes,
does the surface information change ? 62

New relocation entries included in ARM64X FFRY

Newly added relocation entries to switch between ARM64 and ARM64EC

IMAGE_DYNAMIC_RELOCATION_ARM®64X
» Added as one entry to Dynamic Value Relocation Table (DVRT)
* Noted as DVRT ARM64X after this

Applied prior to mapping the target process to memory, overwrites various
information dynamically

» PE Header (Entry point, RVA of Export Directory, Machine Type etc.)

» Offset for API call included in the code section

This relocation is applied from the kernel side by nt!MiApplyConditionalFixups

63

DVRT ARM64X Data Structure FFRL

For details of DVRT ARM64X's data structure refer to

Discovering a new relocation entry of ARM64X in recent Windows 10 on Arm

3 types of relocation entries
« Zero fill: O clears 2/4/8 byte of specified address
 Assign value: overwrites 2/4/8 byte of specified address with specified value

* Delta: either add/subtract 4 or 8 from the 4 bytes of specified address data

64

https://ffri.github.io/ProjectChameleon/new_reloc_chpev2/

DVRT ARM64X Data Structure FFRY

For details of DVRT ARM64X's data structure refer to

Discovering a new relocation entry of ARM64X in recent Windows 10 on Arm

Unlike base relocations, it can

3 types of relocation entries arbitrary-write the data in the image
« Zero fill: O clears 2/4/8 byte of spcc

* Assign value: overwrites 2/4/8 byte of specified address with specified
value

* Delta: either add/subtract 4 or 8 from the 4 bytes of specified address data

65

https://ffri.github.io/ProjectChameleon/new_reloc_chpev2/

DVRT ARM64X Example:
Rewrite of architectural information

FFRI
N\

1303£4=04 00 00 Q0 00
1303£4=08 30 00 Q0 00

1303£fd4elc ec 50
1203f4e0e 64 8¢

1300000ec o4

i

RELOCATION BLOCK

ddw
ddw
dw
dw

0Oh
30h

Overwrite 2 bytes data

Ox1800000EC with 0x8664

a0ECh
geo4h

Oc 00 5f IMAGE FILE HEADER

Architectural information is
overwritten from OxAA64 to

da de 2% 00 00

00 00 00 00 00.. 0x8664
1300000ec ©4 aa dw ARo4dh Machine
1500000 Oc 0O dw Ch NumberOfSections
12300000£0 S9f 4a de 29 ddw 290E4R%Fh TimeDateStamp

Architectural information inside the DLL changes
from ARM64 to x64 by DVRT ARM64X
This enables the loading from x64 / ARM64EC processes 66

ARMG64X Relocation Obfuscation

FFRI
\

Can DVRT ARMO64X be used for obfuscation?

@ 1

-

Overwrite
ICNGELG

data by
relocation

N

?

~y

Ju"::é :ﬂ: PE valid PE header

junk/fake code valid code

I .,
junk/fake IAT valid IAT

DVRT ARM64X DVRT ARM64X
for decoding for decoding

At execution, valid
code and header

get used for
proper execution

67

Usage example: Packer FERL

junk/fake PE
header

valid PE header

junk/fake code valid code

Code before
applying

Unpacked code
after applying

relocation relocation

DVRT ARM64X

- (= I 1:814:ARMB4EC> u ChameleonPacker+7088
TE£6d63c7000° 00 00 00 00 udf u.wI : dummy Function [C:\Users)
Tffede3cT004 00 00 00 a0 udf 0x0 .
TELede3c7003 00 00 00 00 udf 0x0 ..
TLL6d63cT00c 00 00 a0 ad udf 0x0
TE£fede3cT010 00 00 00 a0 udf 0x0 i
Tffede3cT014 00 00 00 an udf 0x0 r " 1s1 #0x18
TLLEd63cTO01lEd 00 00 a0 a0 \ udf 0x0 . 50 L 1

Usage example: Packer

Q. If we dump it, we can easily analyze?

A. Possible to obstruct analysis after memory dump
By editing the PE section header with DVRT ARM64X fool the disassembly results.

PE Header —

NULL the RVA of the
Image Section Header
with DVRT ARM64X at

execution time

Location for code Disassembly result from a

memory dump does not

used after include .hide

unpacking

69

Usage example: Packer FERL

Further obstruction of analysis

ARMG64X contains both ARM64 and ARM64EC code
* When executing ARM64EC process, ARM64 native code does not get executed

If you unpack code to the location where ARM64 native code is contained....

.hexpthk (x64)

Wy this

.text (ARM64)

location for

.text (ARM64EC)

- 0

N

GhOADPEON

A

Chamele;

18: ARMG4EC>
b

(00007 f6" f9

.dll
dll

|
4

Next

Customize...

Ln 0, Col 0 Sys0:<Local>

Proc 001:4408 Thrd 018:4484

71

Usage example: Packer

FFRI
N\

Obstruct dynamic analysis using WinDbg

This is ARM64

Disassembly
Offset: @%scopeip
Mo prior disassembly possible

.hexpthk (x64)

.text (ARM64)

.text (ARM64EC)

Interpreted and

executed as x64 in
ARMG4EC

72

FFRI

Countermeasures: Ghidra script for ARM64X analysis X
Ghidra script for DVRT ARM64X analysis

Apply DVRT ARM64X relocation to ARM64X and save as a file

« If DVRT ARM64X is used as a packer, possible to save the unpacked result as a file

Also, can dump DVRT ARM64X relocation entries as follows

@ Show ChpeFixup records of user32.dll >

=3

Location [, | Data be written Metadata and Offzet Felocation Entry Location | Relocation Type

1800000ec 2664 flec 180248934 ASSIGN_WALUE A

180000110 $0c0 9110 180248938 ASSIGN_VALLE

180000170 12ebc 9170 18024893 ASSIGN_WVALLE

180000174 85d0 0174 180248944 ASSIGN_VALLE

120000188 15a5d7 9188 18024894a ASSIGN_VALLE

12000018c 78 918c 180248950 ASSIGN_WVALUE

18000010 111040 91c0 180248956 ASSIGN_WALLE

12000014 128 94 18024895¢ ASSIGN_VALLE

77

https://github.com/FFRI/ProjectChameleon/tree/master/ghidra_scripts

In Summary

Summarized what is ARM64X and its characteristics
ARMG64X is a fat binary containing both ARM64 native and ARM64EC code

» Characterized by code execution changes based on process used or parent process.

Disclosed new relocation entry implemented in ARM64X
Called IMAGE_DYNAMIC_RELOCATION_ARM®64X (DVRT ARM64X)

 Unique characteristics include relocation entries that can Arbitrary Written inside the
ARM64X image.

Proposed new obfuscation technique using DVRT ARM64X

Pointed out that technique is resistant to static analysis or dynamic analysis using
WinDbg after dump.

78

Summary and message FFRL

Presented analysis results of compatibility technologies for Windows on ARM
Introduced attack methods using these compatibility technologies.

It has just been announced, and there may be various other attack methods.

Further research is necessary

The concepts of the attack methods presented today is widely applicable.

For example, the Caching Mechanism is implemented for speed when
iImplementing binary translation.

* We believe that same concept will be applicable to the similar compatibility technologies in the future.

We hope security research regarding compatibility
technologies will become more active and as a result
sufficient countermeasures will be developed in the future.

79

Links to tools and PoC FERY,

XTA Cache File Related
https://github.com/FFRI/XtaTools (PoC code for XTA Cache Hijacking)
https://github.com/FFRI/radare2 (radare2 for XTA Cache File analysis)

Black Hat EU 2020 Presentation (Details regarding file formats and XTA Cache
Hijacking)

ARMG64EC-ARM64X Related
https://github.com/FFRI/ProjectChameleon (PoC Code/tool/analysis document)

https://ffri.github.io/ProjectChameleon/ (Document aggregating analysis results.)

80

https://github.com/FFRI/XtaTools
https://github.com/FFRI/radare2
https://www.blackhat.com/eu-20/briefings/schedule/index.html#jack-in-the-cache-a-new-code-injection-technique-through-modifying-x-to-arm-translation-cache-21324
https://github.com/FFRI/ProjectChameleon
https://ffri.github.io/ProjectChameleon/

Thank you!

FFRI
N\

For questions/comments:
Twitter DM: @FFRI_Research
email: research-feedback@ffri,jp

81

