
1

株式会社ＦＦＲＩセキュリティ
https://www.ffri.jp

Fourteenforty Research Institute

Appearances are deceiving: Novel offensive
techniques in Windows 10/11 on ARM

2

About me

Joined FFRI Security, Inc. after graduating.

Working as a research engineer at the basic research lab.

Recently reverse-engineering compatibility technology of Windows on ARM and M1 Mac.

Black Hat EU 2020 Briefings Speaker

https://www.blackhat.com/eu-20/briefings/schedule/index.html#jack-in-the-cache-a-new-

code-injection-technique-through-modifying-x-to-arm-translation-cache-21324

GitHub: https://github.com/kohnakagawa

https://www.blackhat.com/eu-20/briefings/schedule/index.html#jack-in-the-cache-a-new-code-injection-technique-through-modifying-x-to-arm-translation-cache-21324
https://github.com/kohnakagawa

3

The Rise of ARM

MacBook Pro 13-inch - Apple

Surface Pro X – Ultra-thin & Always Connected 2-

in-1 Laptop – Microsoft Surface

Surface Pro X Windows on ARM
M1 Mac

ARM Based Laptops are

being released one after another.
※ARM notation in accordance with Microsoft’s Documentation Standards

https://www.apple.com/macbook-pro-13/
https://www.microsoft.com/en-us/p/surface-pro-x/8qg3bmrhnwhk?activetab=pivot%3aoverviewtab

4

Why an ARM Based Laptop?

ARM has superior power usage related functionality.

Many have a longer battery life compared to previous devices※.

• Always Connected PCs, laptops that can be used like a smartphone

In the new normal, work will not be restricted by time of day or location

• Long battery life is crucial.

ARM based laptops will continue to rise in demand.

※Windows on ARM Benchmarked > Impressions, Superb Battery Life, What Needs to Improve | TechSpot

https://www.techspot.com/review/1599-windows-on-arm-performance/page4.html

5

The Application Compatibility Problem

We cannot use existing software for x86/x64

on ARM-based laptops.

x86/x64 ARM64

6

The Solution to The Incompatibility Problem

Binary Translation and Caching Mechanism

Translate x86/x64 to ARM64

The translation is resource-intensive, a caching mechanism is used for
acceleration.

• Cache the execution result as a file and reuse in subsequent executions.

x86/x64 ARM64Translate

During or After

Execution

7

The Solution to The Incompatibility Problem

Hybrid Binary

Maintain compatibility with current binary while allowing code execution
at fast speeds close to native code execution.

x86/x64 andARM64

Hybrid Binary
Looks like

x86/x64 binary

Execute ARM 64

code at execution

8

The Solution to The Incompatibility Problem

Fat Binary

A binary that combines multiple binaries for various architectures.

• Allows using a single binary for multiple uses or multiple platforms.

x86/x64 Binary

ARM64 Binary

Select 1 out of the 2 for

execution.

9

Windows and macOS Implementation

Compatibility

Technology
Windows

Implementation

macOS Implementation

Binary Translation and

Caching Mechanism

XTAJIT and XtaCache Rosetta 2

Hybrid Binary CHPE・ARM64EC N/A

Fat Binary ARM64X Universal 2

Both Windows on ARM and M1 Mac have implemented

compatibility technologies.

10

Problem: Malicious Usage of Compatibility Technologies

There have been cases where compatibility technologies have been
used for malicious intent.

Ex: Application Shimming

The possibility of malicious usage of compatibility technologies
implemented in Windows on ARM and M1 Mac?

-> As far as we know, not even discussed.

Details of the compatibility technologies aren’t being disclosed to
begin with.

Information disclosed by Microsoft or Apple is very limited and there aren’t that
many reverse engineering findings neither.

11

Purpose of this research

To discover attack methods leveraging the malicious use of the newly
implemented compatibility technologies.

Specifically…

• Details of the compatibility technologies. (※ Including acceleration technologies
often included in compatibility technologies.)

• Malicious use of such technologies.

To discover/disclose the above 2 aims.

We hope that this research will lead to increased security

research of compatibility technologies.

12

Compatibility

Technology
Windows

Implementation

macOS Implementation

Binary Translation and

Caching Mechanism

XTAJIT and XtaCache Rosetta 2

Hybrid Binary CHPE・ARM64EC N/A

Fat Binary ARM64X Universal 2

Compatibility technologies examined

3 Compatibility technologies implemented in

Windows on ARM are the subject.

13

Compatibility

Technology
Windows

Implementation

macOS Implementation

Binary Translation and

Caching Mechanism

XTAJIT and XtaCache Rosetta 2

Hybrid Binary CHPE・ARM64EC N/A

Fat Binary ARM64X Universal 2

3 Compatibility technologies implemented in the

Windows on ARM are the subject.

Compatibility technologies examined

Regarding macOS…

14

Project Champollion

Repository of macOS Rosetta 2 related reverse engineering results.

https://github.com/FFRI/ProjectChampollion

https://news.ycombinator.com/item?id=26346980

https://github.com/FFRI/ProjectChampollion
https://news.ycombinator.com/item?id=26346980

15

Compatibility technologies examined

Binary Translation and Caching Mechanism

(XTAJIT and XtaCache)

Hybrid Binary (CHPE・ARM64EC)

Fat Binary (ARM64X)

16

Compatibility technologies examined

Binary Translation and Caching Mechanism

(XTAJIT and XtaCache)

Hybrid Binary (CHPE・ARM64EC)

Fat Binary (ARM64X)

17

Binary translation and Caching Mechanism in Windows on ARM

Binary Translation: XTAJIT (※XTA is suspected an acronym for X86-To-ARM)

JIT Binary translation of x86/x64 code to ARM 64 code upon execution.

• Windows 10 Insider Preview and Windows 11 also support x64

Caching Mechanism: XtaCache

Translation results are saved as a XTA Cache File and reused in subsequent re-
executions.

• Decrease JIT binary translation overhead and accelerate execution of application after the
2nd time.

18

X86/x64 Emulation

EXE and DLLs related to x86/x64 emulation

• xtajit.dll/xtajit64.dll: x86/x64 emulator DLL

• xtac.exe/xtac64.exe: Compiler to create XTA Cache File

• XtaCache.exe: Management service of XTA Cache File

19

X86/x64 Emulation Flow

…

XtaCache.exe

x86_app.exe xtajit.dll

ACCESSCHK.EXE.95…mp.1.jc

X86_APP.EXE.983D…mp.1.jc

…

1. Notification of x86

image loaded (ALPC)

XTA Cache File Directory ※Execution flow when using XTA Cache File

20

X86/x64 Emulation Flow

…

XtaCache.exe

x86_app.exe xtajit.dll

2. Search

ACCESSCHK.EXE.95…mp.1.jc

X86_APP.EXE.983D…mp.1.jc

…

1. Notification of x86

image loaded (ALPC)

XTA Cache File Directory ※Execution flow when using XTA Cache File

21

X86/x64 Emulation Flow

…

XtaCache.exe

x86_app.exe xtajit.dll

2. Search

ACCESSCHK.EXE.95…mp.1.jc

X86_APP.EXE.983D…mp.1.jc

…

1. Notification of x86

image loaded (ALPC)

Found!

XTA Cache File Directory ※Execution flow when using XTA Cache File

22

X86/x64 Emulation Flow

…

XtaCache.exe

x86_app.exe xtajit.dll

2. Search

ACCESSCHK.EXE.95…mp.1.jc

X86_APP.EXE.983D…mp.1.jc

…

1. Notification of x86

image loaded (ALPC)

3. Memory map

to target process

X86_APP.EXE.983D…mp.1.jc

XTA Cache File Directory ※Execution flow when using XTA Cache File

23

X86/x64 Emulation Flow

…

XtaCache.exe

x86_app.exe xtajit.dll

2. Search

ACCESSCHK.EXE.95…mp.1.jc

X86_APP.EXE.983D…mp.1.jc

…

1. Notification of x86

image loaded (ALPC)

3. Memory map

to target process

4. Transfer execution control

X86_APP.EXE.983D…mp.1.jc

XTA Cache File Directory ※Execution flow when using XTA Cache File

24

XTA Cache File

XTA Cache File exists in %SystemRoot%¥XtaCache

XTA Cache File is created for each x86 and x64 PE

Only the XtaCache service can access these files by default.

• But this settings can be changed by administrator access privileges.

For x64

For x86

25

XTA Cache File Structure

Refer to Black Hat EU 2020 presentation material for more details about the file format

Parser for XTA Cache File and analysis tool for contained ARM64 code are already public

https://github.com/FFRI/XtaTools

ARM64 instructions in XTA

cache file

https://github.com/FFRI/radare2

We will only cover what is necessary to understand

this research in this presentation

https://i.blackhat.com/eu-20/Wednesday/eu-20-Nakagawa-Jack-In-The-Cache-A-New-Code-Injection-Technique-Through-Modifying-X86-To-Arm-Translation-Cache.pdf
https://github.com/FFRI/XtaTools
https://github.com/FFRI/radare2

26

XTA Cache File Structure

Header

BLCK Stub

Translated code

…

Address pairs

NT path name

Contains Signature / Offset for following block etc.

Includes code for returning to the emulator DLL

Includes x86/x64 to ARM64 translated code

Repeat as many times as

cache file updates

x86/x64 and ARM64 code RVA address pair

NT path name for x86/x64 PE

Not obfuscated , raw ARM

64 assembly

27

XTA Cache File Structure

Header

BLCK Stub

Translated code

…

Address pairs

NT path name

Contains Signature / Offset for following block etc.

Includes code for returning to the emulator DLL

Includes x86/x64 to ARM64 translation result code

Repeat as many times as

cache file updates

x86/x64 and ARM64 code RVA address pair

NT path name for x86/x64 PE

What happens when we modify

this ARM64 code？

Not obfuscated , raw

ARM 64 assembly

28

Execution flow when XTA cache file is modified

…

XtaCache.exe

x86_app.exe xtajit.dll

2. Search

ACCESSCHK.EXE.95…mp.1.jc

X86_APP.EXE.983D…mp.1.jc

…

3. Memory map

to target process.

X86_APP.EXE.983D…mp.1.jc

4. Transfer execution control

XTA Cache File Directory

1. Notification of x86

image loaded (ALPC)

29

…

XtaCache.exe

x86_app.exe xtajit.dll

2. Search

ACCESSCHK.EXE.95…mp.1.jc

X86_APP.EXE.983D…mp.1.jc

…

3. Memory map

to target process.

X86_APP.EXE.983D…mp.1.jc

4. Transfer execution control

XTA Cache File Directory

1. Notification of x86

image loaded (ALPC)

Execution flow when XTA cache file is modified

XTA Cache File integrity isn’t checked

and is mapped to the target process memory,

then it is executed.

XTA Cache Hijacking

30

XTA Cache Hijacking Characteristics

Code injection method with 3 characteristics

• Difficult to detect: Can be done without getting the handle for the target process.

− The modified XTA Cache File’s code gets executed through the normal emulation
process.

• Difficult to trace: No evidence in the original x86/x64 PE file.

− If we do not know the XTA Cache File, it is hard to trace.

• Persistent: The code injection result becomes persistent as a file.

− The same code injection will get executed after a reboot if the same application is
executed.

In the MITRE ATT&CK …

This Technique enables Defense Evasion・Credential Access・Persistence

However, it does require administrator privilege to use…

31

XTA Cache Hijacking Characteristics

Code injection method with 3 characteristics

• Difficult to detect: Can be done without getting the handle for the target process.

− The modified XTA Cache File’s code gets executed through the normal emulation
process.

• Difficult to trace: No evidence of the original x86/x64 PE file.

− If we do not know the XTA Cache File, it is hard to trace.

• Persistent: The code injection result becomes persistent as a file.

− The same code injection will get executed after a reboot if the same application is
executed.

In the MITRE ATT&CK …

This Technique enables Defense Evasion・Credential Access・Persistence

However, it does require administrator privilege to use…

Is it worth to use this technique by

gaining administrator privilege ？

32

XTA Cache Hijacking Characteristics

Unique characteristics of this method

Invisible Execution

• Can execute a different code while hiding its execution at the x86/x64 code level.

Example of Invisible Execution: Invisible API hooking

• When code hooking, evidence of the hook are left.

• By using XTA Cache Hijacking, we can code hook without leaving this
evidence at the x86/x64 code level.

33

Demo

34

Countermeasures to XTA Cache Hijacking

Monitor access privilege changes of the XtaCache directory

To edit the XTA Cache File, we need to edit ACL of XtaCache directory.

• Because only the XtaCache service has access by default.

Usually changes to the access privileges to the XtaCache directory do not happen.

By adding this to the monitoring process, XTA Cache Hijacking can be traced.

• Defense is possible by limiting access privilege changes.

35

In Summary

By analyzing XTAJIT and XTA Cache, revealed the following details

x86/x64 Emulation flow

XTA Cache File Structure (Only explained that the ARM64 code does not get
obfuscated and exists in raw format)

Proposed a new code injection method, called XTA Cache Hijacking

Hard to detect / Hard to trace / Persistent characteristics

Also, a unique characteristic of this attack , Invisible Execution

36

Compatibility technologies examined

Binary Translation and Caching Mechanism

(XTAJIT and XtaCache)

Hybrid Binary (CHPE・ARM64EC)

Fat Binary (ARM64X)

37

Hybrid Binary

Compiled Hybrid PE (CHPE)

PE contains both x86 and ARM64 code

Example of CHPE:

• System DLLs under %SystemRoot%¥SyChpe32 (such as kernel32.dll and
user32.dll)

• Office EXE for Windows on ARM

X86 Emulation uses CHPE system DLLs

• When there is no SyChpe32, system DLLS under SysWOW64 are used instead.

38

CHPE Characteristics

Enable near ARM64 native performance while maintaining x86 PE
compatibility

CHPE acts as a x86 PE

• Surface analysis information is x86, disassembly result
of the export function is also x86

• export function is called export thunk

export thunk is the jump stub to the ARM64 code

• The actual function code is included into the ARM64 code
at the jump destination

JIT Binary translation only executes for export thunk

• No need to JIT binary translation against the whole function

• Therefore, performances is nearly equal to that of native ARM64 execution

− By CHPE-ing system DLL improve performance.

mov edi, edi
push ebp

…
jmp #func0

x86 (export thunk of func0)

#func0
stp x29,x30,[sp, #-0x10]!
mov x29, sp
…

ARM64 (actual code of func0)

42

ARM64 Emulation Compatible (ARM64EC)

ARM64EC (※ABI・Build Architecture are collectively called like this)

Basically, a CHPE for x64

It has the following characteristics like CHPE:

• Includes both x64 and ARM64 code, x64 code is a jump stub to ARM64 code

• Allows for ARM64EC and x64 PE to be mixed and used in one process

The major difference with CHPE, the SDK is publicly available

• Third-party vendor can also use ARM64EC for ARM64 transition

https://blogs.windows.com/windowsdeveloper/2021/06/28/announcing-arm64ec-building-native-and-interoperable-apps-for-windows-11-on-arm/

https://blogs.windows.com/windowsdeveloper/2021/06/28/announcing-arm64ec-building-native-and-interoperable-apps-for-windows-11-on-arm/

44

CHPE・ARM64EC API Calls

There are the two following cases to call an external DLL from CHPE/ARM64EC

Function calls for x86/x64 DLLs (CHPE/ARM64EC -> x86/x64)

• It is executed by JIT Binary translation (or XTA cache File)

• Because of the difference in the conventions, calling convention changes happen

Function calls for CHPE/ARM64EC DLLs (CHPE/ARM64EC -> CHPE/ARM64EC)

• Since the two calling conventions are the same, it seems that there is no need for changes
to the calling conventions, however…

47

CHPE/ARM64EC API call flow

.hexpthk

user32.dll

(CHPE or ARM64EC)

.text

App

(CHPE or ARM64EC)

IAT

.text

1. call MessageBoxA

3. After JIT translation, if

necessary, jump to the

function body

2. Get export thunk

address via IAT

x86/x64

ARM64

4. Execute function body

48

CHPE/ARM64EC API call flow

.hexpthk

user32.dll

(CHPE or ARM64EC)

.text

App

(CHPE or ARM64EC)

IAT

.text

1. call MessageBoxA

3. After JIT translation, if

necessary, jump to the

function body

2. Get export thunk

address via IAT

x86/x64

ARM64

4. 関数本体の処理を実行

Calling Convention

changes (to x86/x64)

Calling Convention

changes (to

CHPE/ARM64EC)

When calling the API via IAT, export thunk gets executed.

Therefore, calling convention conversions are needed.

49

Optimizing API calls

In many cases export thunk execution can be skipped.

Most of the code included in export thunk are for hot patching.

Unless the code is changed by code hooking, this code does nothing.

If execution can be skipped except in special cases, it will lead to faster API calls.

• It will allow the reducing of export thunk JIT translating and calling convention
conversions.

Can a function be called while skipping

the execution of export thunk？

Hot patching code

50

Hybrid Auxiliary IAT

The other IAT that is in Hybrid Auxiliary IAT: CHPE・ARM64EC

When necessary, Hybrid Auxiliary IAT can skip the execution of export thunk

The program loader refers to the contents of the IAT and changes the Hybrid
Auxiliary IAT at runtime. ※

• When execution of export thunk is not needed, overwrites the Hybrid Auxiliary IAT entry
by the actual address of the jump destination of export thunk

• This allows function calls without going through export thunk

※ntdll!#LdrpFastForwardAuxiliaryIat function does this

51

API calls via Hybrid Auxiliary IAT

.hexpthk

user32.dll

.text

Hybrid

Auxiliary IAT

CHPE or ARM64EC

IAT

.text

call MessageBoxA

Calls function via Hybrid

Auxiliary IAT entry

Can call the API while skipping the export thunk execution

x86/x64

ARM64

This part gets skipped

52

Two types of hooking available in CHPE・ARM64EC

Classic IAT hooking

It works fine.

• Because it detects protection changes of IAT and changes the API call to refer to IAT

Hybrid Auxiliary IAT hooking

IAT hooking by modifying the Hybrid Auxiliary IAT entry

• Unique because it allows hooking without modifying IAT entries

− Cannot detect if IAT is hooked by simply dumping IAT entries

55

Countermeasures: Hybrid Auxiliary IAT hooking

WindDbg extension command for analyzing Hybrid Auxiliary IAT

https://github.com/FFRI/ProjectChameleon/tree/master/hybrid_aux_iat

56

In Summary

Summarized CHPE・ARM64EC Characteristics and use cases.

Also pointed out the fact that there are many steps such as calling convention
conversions, JIT translations when calling an API.

Clarified what Hybrid Auxiliary IAT is

Enables acceleration of API calls sometimes by skipping calling convention
conversions / JIT binary translations.

Proposed a new API hooking method by modifying Hybrid Auxiliary IAT

Unique characteristic includes the inability to determine a hook based on IAT

57

Compatibility technologies examined

Binary Translation and Caching Mechanism

(XTAJIT and XtaCache)

Hybrid Binary (CHPE・ARM64EC)

Fat Binary (ARM64X)

58

Fat binary for Windows on ARM

ARM64X

Contains code for both ARM64 native and ARM64EC

• File format is the same as the traditional PE

− No new file format is prepared for ARM64X

• Surface information is ARM64

Examples of files provided as ARM64X

• System DLLs under %SystemRoot%System32

• Some of the System EXE such as cmd.exe or dllhost.exe

ARM64EC Binary

ARM64 Binary

Surface information is

ARM64

59

ARM64X Characteristics

In case of EXE, the code that gets executed changes based on parent
process architecture

Parent process

architecture

Executed code

x86 ARM64

x64 ARM64EC

ARM64 ARM64

ARM64EC ARM64EC

60

ARM64X Characteristics

Can be loaded from all processes for ARM64EC・x64・ARM64

Surface information is ARM64, but can be loaded from both ARM64EC and x64 processes

• When loaded from x64 process (x64 Chrome browser)

• When ARM64 native process does the loading
(ARM64 Edge browser)

Same DLL gets

loaded

61

ARM64X Characteristics

Can be loaded from all processes for ARM64EC・x64・ARM64

Surface information is ARM64, but can be loaded from both ARM64EC and x64 processes

• When loaded from x64 process (x64 Chrome browser)

• When ARM64 native process does the loading
(ARM64 Edge browser)

Same DLL gets

loaded

Doesn’t the DLL architectural information and

process architectural information have to match

to load usually ?

62

ARM64X Characteristics

Analyze surface information of loaded DLL with WinDbg

Should be the same file but surface information

changed after the DLL was loaded？
Only when it is used by ARM64EC (or x64) processes,

does the surface information change？

ARM64 Process ARM64EC (or x64) Process

Machine Type for

ntdll.dll is ARM64
Machine Type for

ntdll.dll is x64？

63

New relocation entries included in ARM64X

Newly added relocation entries to switch between ARM64 and ARM64EC

IMAGE_DYNAMIC_RELOCATION_ARM64X

• Added as one entry to Dynamic Value Relocation Table (DVRT)

• Noted as DVRT ARM64X after this

Applied prior to mapping the target process to memory, overwrites various
information dynamically

• PE Header (Entry point, RVA of Export Directory, Machine Type etc.)

• Offset for API call included in the code section

This relocation is applied from the kernel side by nt!MiApplyConditionalFixups

64

DVRT ARM64X Data Structure

For details of DVRT ARM64X’s data structure refer to

Discovering a new relocation entry of ARM64X in recent Windows 10 on Arm

3 types of relocation entries

• Zero fill: 0 clears 2/4/8 byte of specified address

• Assign value: overwrites 2/4/8 byte of specified address with specified value

• Delta: either add/subtract 4 or 8 from the 4 bytes of specified address data

https://ffri.github.io/ProjectChameleon/new_reloc_chpev2/

65

DVRT ARM64X Data Structure

For details of DVRT ARM64X’s data structure refer to

Discovering a new relocation entry of ARM64X in recent Windows 10 on Arm

3 types of relocation entries

• Zero fill: 0 clears 2/4/8 byte of specified address

• Assign value: overwrites 2/4/8 byte of specified address with specified
value

• Delta: either add/subtract 4 or 8 from the 4 bytes of specified address data

Unlike base relocations, it can

arbitrary-write the data in the image

https://ffri.github.io/ProjectChameleon/new_reloc_chpev2/

66

DVRT ARM64X Example:
Rewrite of architectural information

Overwrite 2 bytes data

0x1800000EC with 0x8664

Architectural information is

overwritten from 0xAA64 to

0x8664

Architectural information inside the DLL changes

from ARM64 to x64 by DVRT ARM64X

This enables the loading from x64 / ARM64EC processes

67

ARM64X Relocation Obfuscation

Can DVRT ARM64X be used for obfuscation?

junk/fake code

junk/fake PE

header

junk/fake IAT

DVRT ARM64X

for decoding

Overwrite

junk/fake

data by

relocation

valid code

valid PE header

valid IAT

DVRT ARM64X

for decoding

?

At execution, valid

code and header

get used for

proper execution

68

Usage example: Packer

junk/fake code

junk/fake PE

header

junk/fake IAT

DVRT ARM64X

for decoding

valid code

valid PE header

valid IAT

DVRT ARM64X

for decoding

Code before

applying

relocation

Unpacked code

after applying

relocation

69

Usage example: Packer

Q. If we dump it, we can easily analyze?

A. Possible to obstruct analysis after memory dump

By editing the PE section header with DVRT ARM64X fool the disassembly results.

.text

.hide

PE Header

NULL the RVA of the

Image Section Header

with DVRT ARM64X at

execution time

Disassembly result from a

memory dump does not

include .hide

Location for code

used after

unpacking

70

Usage example: Packer

Further obstruction of analysis

ARM64X contains both ARM64 and ARM64EC code

• When executing ARM64EC process, ARM64 native code does not get executed

If you unpack code to the location where ARM64 native code is contained….

.text (ARM64)

.text (ARM64EC)

.hexpthk (x64)

Use this location for

unpacking

71

Demo

72

Usage example: Packer

Interpreted and

executed as x64 in

ARM64EC process

This is ARM64

.text (ARM64)

.text (ARM64EC)

.hexpthk (x64)

Obstruct dynamic analysis using WinDbg

77

Countermeasures: Ghidra script for ARM64X analysis

Ghidra script for DVRT ARM64X analysis

Apply DVRT ARM64X relocation to ARM64X and save as a file

• If DVRT ARM64X is used as a packer, possible to save the unpacked result as a file

Also, can dump DVRT ARM64X relocation entries as follows

https://github.com/FFRI/ProjectChameleon/tree/master/ghidra_scripts

78

In Summary

Summarized what is ARM64X and its characteristics

ARM64X is a fat binary containing both ARM64 native and ARM64EC code

• Characterized by code execution changes based on process used or parent process.

Disclosed new relocation entry implemented in ARM64X

Called IMAGE_DYNAMIC_RELOCATION_ARM64X (DVRT ARM64X)

• Unique characteristics include relocation entries that can Arbitrary Written inside the
ARM64X image.

Proposed new obfuscation technique using DVRT ARM64X

Pointed out that technique is resistant to static analysis or dynamic analysis using
WinDbg after dump.

79

Summary and message

Presented analysis results of compatibility technologies for Windows on ARM

Introduced attack methods using these compatibility technologies.

It has just been announced, and there may be various other attack methods.

Further research is necessary

The concepts of the attack methods presented today is widely applicable.

For example, the Caching Mechanism is implemented for speed when
implementing binary translation.

• We believe that same concept will be applicable to the similar compatibility technologies in the future.

We hope security research regarding compatibility

technologies will become more active and as a result

sufficient countermeasures will be developed in the future.

80

Links to tools and PoC

XTA Cache File Related

https://github.com/FFRI/XtaTools (PoC code for XTA Cache Hijacking)

https://github.com/FFRI/radare2 (radare2 for XTA Cache File analysis)

Black Hat EU 2020 Presentation (Details regarding file formats and XTA Cache
Hijacking)

ARM64EC・ARM64X Related

https://github.com/FFRI/ProjectChameleon (PoC Code/tool/analysis document)

https://ffri.github.io/ProjectChameleon/ (Document aggregating analysis results.)

https://github.com/FFRI/XtaTools
https://github.com/FFRI/radare2
https://www.blackhat.com/eu-20/briefings/schedule/index.html#jack-in-the-cache-a-new-code-injection-technique-through-modifying-x-to-arm-translation-cache-21324
https://github.com/FFRI/ProjectChameleon
https://ffri.github.io/ProjectChameleon/

81

Thank you!

For questions/comments:

Twitter DM: @FFRI_Research

email: research-feedback@ffri.jp

