

Improving accuracy of malware detection by filtering evaluation dataset based on its similarity

FFRI, Inc. http://www.ffri.jp

Preface

- This slides was used for a presentation at CSS2013
 - http://www.iwsec.org/css/2013/english/index.html
- Please refer the original paper for the detail data
 - http://www.ffri.jp/assets/files/research/research papers/M
 WS2013 paper.pdf
 (Written in Japanese but the figures are common)
- Contact information
 - research-feedback@ffri.jp
 - @FFRI_Research (twitter)

Agenda

- Background
- Problem
- Scope and purpose
- Experiment 1
- Experiment 2
- Experiment 3
- Consideration
- Conclusion

Background - malware and its detection

Malware generators

Obfuscators

Increasing malware

Targeted Attack (Unknown malware)

Limitation of signature matching

other methods

Bigdata

Heuristic

Machine learning

Could reputation

Background - Related works

- Mainly focusing on a combination of the factors below
 - Features selection and modification, parameter settings
- Some good results are reported (TRP:90%+, FRP:1%-)

Features	Algorithms		Evaluation
Static information	SVM	4	TPR/FRP, etc.
Dynamic information	Naive bayes		Accuracy, Precision
Hybrid	Perceptron, etc.	\neg /	ROC-curve, etc.

Problem

- General theory of machine learning:
 - Accuracy of classification declines
 if trends of training and testing data are different
- How about malware and benign files

Scope and purpose

- 1 Investigating differences between similarities of malware and benign files (Experiment-1)
- ② Investigating an effect for accuracy of classification by the difference(Experiment-2)
- ③ Based on the result above, confirming an effect of removing data whose similarity with a training data is low (Experiment-3)

Experiment-1(1/3)

- Used FFRI Dataset 2013 and benign files we collected as datasets
- Calculated the similarity of each malware and benign files (Jubatus, MinHash)
- Feature vector: A number of 4-gram of sequential API calls
 - ex: NtCreateFile_NtWriteFile_NtWriteFile_NtClose: n times
 NtSetInformationFile_NtClose_NtClose_NtOpenMutext: m times

_ A B C						
_	Α	В	С			
A		8.0	0.52			
В	-	_	1.0			
С	-	()	20 - 22 22 - 33			
	_	-	_			

Experiment-1(2/3)

Grouping malware and benign files based on their similarities

Experiment-1(3/3)

It is more difficult to find similar benign files compared to malware

Threshold of similarity

Experiment-2(1/3)

- How much does the difference affect a result?
- 50% of malware/benign are assigned to a training, the others are to a testing dataset(Jubatus, AROW)

Experiment-2(2/3)

- How much does the difference affect a result?
- 50% of malware/benign are assigned to a training, the others are to a testing dataset(Jubatus, AROW)

Experiment-2(3/3)

The accuracy declines if trends of training and testing data are different

Experiment-3(1/6) – After a training

Experiment-3(2/6) - After a classification

FFRI

Experiment-3(2/6) - After a classification

FFRI

Experiment-3(3/6) - Low similarity data

FFRI

Experiment-3(4/6) – Effect to TPR

Experiment-3(5/6) – Effect to FPR

Experiment-3(6/6)

Transition of the number of classified data

Consideration(1/3)

- In real scenario:
 - trying to classify an unknown file/process whether it is benign files or not
- If we apply Experiment-3:
 - Files are classified only if similar data is already trained
 - If not, files are not classified which results in
 - FN if the files is malware
 - TF if the files is benign (All right as a result)
- Therefore it is a problem about "TPR for unique malware" (Unique malware is likely to be undetectable)

Consideration(2/3)

- If malware have many variants as the current
 - ML-based detection works well
- We have to investigate
 - Trends of usage of the tools above
 - Possibility of anti-machine learning detection

Consideration(3/3)

- How to deal with unclassified (filtered) data
 - 1. Using other feature vectors
 - 2. Enlarging a training dataset (Unique \rightarrow Not unique)
 - 3. Using other methods besides ML

Conclusion

- Distribution of similarity for malware and benign are difference (Experiment-1)
- Accuracy declines if trends of training and testing data are different (Experiment-2)
- TPR of unique malware declines when we remove low similarity data (Experiment-3)
- Continual investigation for trends of malware and related tools are required
- (Might be necessary to develop technology to determine benign files)