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Preface

e This slides was used for a presentation at CS52013
- http://www.iwsec.org/css/2013/english/index.html

e Please refer the original paper for the detail data

- http://www.ffri.jp/assets/files/research/research papers/M
WS2013 paper.pdf
(Written in Japanese but the figures are common)

e (Contact information
— research-feedback@ffri.jp
— @FFRI_Research (twitter)
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Background — malware and its detection
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Background — Related works

e Mainly focusing on a combination of the factors below
— Features selection and modification, parameter settings
e Some good results are reported (TRP:90%+, FRP:1%-)

Static information % SVM . \) TPR/FRP, etc.
Dynamic information f*:){ Naive bayes ~ Accuracy, Precision
Hybrid Perceptron, etc. | ROC-curve, etc.




Problem

e General theory of machine learning:

— Accuracy of classification declines
if trends of training and testing data are different

e How about malware and benign files




Scope and purpose

@ Investigating differences between similarities of
malware and benign files(Experiment-1)

@ Investigating an effect for accuracy of classification
by the difference(Experiment-2)

® Based on the result above, confirming an effect of
removing data whose similarity with a training data
Is low (Experiment-3)



Experiment-1(1/3)

e Used FFRI Dataset 2013 and benign files we collected as datasets

e Calculated the similarity of each malware and benign files
(Jubatus, MinHash)
e Feature vector: A number of 4-gram of sequential API calls

— ex: NtCreateFile NtWriteFile NtWriteFile NtClose: n times
NtSetinformationFile_NtClose NtClose NtOpenMutext: m times
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Experiment-1(2/3)

Grouping malware and benign files based on their similarities

Threshold of similarity (0.0 - 1.0)
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Experiment-1(3/3)

It is more difficult to find similar benign files compared to malware
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Experiment-2(1/3)

e How much does the difference affect a result?

)

e 50% of malware/benign are assigned to a training, the others are to a

testing dataset(Jubatus, AROW)
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malwar

classify

TPR: ?
FPR: #
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TPR: True Positive Rate
FPR: False Positive Rate




Experiment-2(2/3)

e How much does the difference affect a result?

e 50% of malware/benign are assigned to a training, the others are to a
testing dataset(Jubatus, AROW)
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Experiment-2(3/3)
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The accuracy declines if trends of training and testing data
are different
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Experiment-3(1/6) — After a training
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Experiment-3(2/6) — After a classification

dividing line
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Experiment-3(2/6) — After a classification
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Experiment-3(3/6) — Low similarity data
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Experiment-3(4/6) — Effect to TPR
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Experiment-3(5/6) — Effect to FPR
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Experiment-3(6/6)
Transition of the number of classified data
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Consideration(1/3)

e In real scenario:

— trying to classify an unknown file/process whether it is
benign files or not

o If we apply Experiment-3:
— Files are classified only if similar data is already trained
— If not, files are not classified which results in
e FN if the files is malware
e TF if the files is benign (All right as a result)

e Therefore it is a problem about “TPR for unique malware”
(Unique malware is likely to be undetectable)



Consideration(2/3)

e If malware have many variants as the current
— ML-based detection works well

e Having many variants o«c malware generators/obfuscators
e We have to investigate

— Trends of usage of the tools above
— Possibility of anti-machine learning detection




Consideration(3/3)

)

e How to deal with unclassified (filtered) data
1. Using other feature vectors

2. Enlarging a training dataset (Unique — Not unique)

3. Using other methods besides ML




Conclusion

e Distribution of similarity for malware and benign are difference
(Experiment-1)

e Accuracy declines if trends of training and testing data are different
(Experiment-2)

e TPR of unique malware declines when we remove low similarity data
(Experiment-3)

e Continual investigation for trends of malware and related tools are required

e (Might be necessary to develop technology to determine benign files)



