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• 1. Review of subversive techniques in kernel space
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    em ber nn  i ioRemember Joanna's classification

• Joanna Rutkowska proposed stealth malware taxonomy in November, 2006.
http://invisiblethings.org/papers/malware-taxonomy.pdf

• Type 0

• standalone malware, which never changes any system resources

• Type I

• changes the persistent system resources

• Type II

• changes the non-persistent system resources

• Type III

• malware runs outside the system
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  y  Type I

• It is easy to detect

• PatchGuard in Vista(x64) is a countermeasure for this type

• Many rootkit detectors have been released for this type
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  y  Type II

• Malware changes the non-persistent system resources

• Hooking point might be modified by the regular execution path

• DKOM(Direct Kernel Object Manipulation)

– by http://www.blackhat.com/presentations/win-usa-04/bh-win-04-
butler.pdf

• KOH(Kernel Object Hooking)

– by Greg Hoglund in Jan, 2006
http://www.rootkit.com/newsread.php?newsid=501
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      M e  nel j  DKOM(Direct Kernel Object Manipulation)

• Malware manipulates the process list, tokens and other kernel objects 
directly

• For example:

– Unlink target process from process list

– Add/remove priviledges to tokens

• DKOM's possibilities are limited

– Whether information hiding can be done depends on the 
implementation of process that deals with the data



Fourteenforty Research Institute, Inc.

12

    H( nel j  o ingKOH(Kernel Object Hooking)

• Remember the SDT, SSDT and other well known && persistent function 
pointers?

• Do you know how many such patching points are there in kernel space?

– They might or might not be persistent

– It depends on each kernel object

• Detector has to understand all function pointers

• is_within_own_memory_range(PVOID Address) is useful, but not enough
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  y  Type III

• No malware exists in the system(guest)

• Malware (ab)uses Virtualization Technology

• SMM Rootkit and Firmware Rootkit might also fall into this category (a 
problem of taxonomy that is not important for our cause)

• BluePill

– Original BP was presented by Joanna Rutkowska in BH-US-2006.

– (Current) New BP supports both Intel VT and AMD-v technologies,
and is also capable of on the fly loading and unloading

– BP doesn't modify any system resources on the guest

• From a technical view, BP patches the guest's PTE to hide its 
loaded virtual memory from the guest

• However this doesn't really help detecting it
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    y   Type III (cont.)

• Vitriol

– Presented by Dino Dai Zovi, Black Hat US 2006

– VT-x rootkit, closed source

• VMM Rootkit Framework

– Posted by Shawn Embleton, Aug, 2007
http://www.rootkit.com/newsread.php?newsid=758

– This is really good start point for learning for how to create VMM
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      a  : to m WormCase Study: Storm Worm

• The Storm Worm first appeared in Fall, 2006

• Some variants have rootkit functions to hide from AV products

• As of Jan 2008 we can see "Happy New Year 2008" variants

• When a user clicks onto the executable,
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   o mStorm Worm

1. Executable drops the system driver (.sys), and loads it into the kernel 
using Service Control Manager (SCM)

2. Driver has two functions shown below

• Rootkit functions
Hide files, registry entries and connections using SSDT and IRP 

hooking

• Code Injection function
Inject malicious code (not DLL) into process context of
services.exe and execute it

3. Injected code starts P2P communication
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    o t u ct  n .Rootkit functions (cont.)

• It hooks the IRP_DEVICE_CONTROL routine by patching the TCP 
DriverObject's IRP table ("¥¥Device¥¥Tcp")

• Hide connections from netstat

But is this KOH?

YES: It modifies the IRP Table contained within the DriverObject

NO: Many people know about the existence of  IRP tables
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   2.    c            v  t hni  n nel Review of subversive techniques in kernel space
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           e v    tua a oWhat we have to consider "Virtualization"

• CPU Virtualization

– Some registers should be reserved for VMM and each VM.
GDTR, LDTR, IDTR, CR0-4, DR0-7, MSR, Segment Register, etc

– Exceptions

• Memory Virtualization

– should separate VMM memory space and each VM's memory space

• Device Virtualization

– Interrupt, I/O instructions, MMIO, DMA access
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  r  i l t nMemory virtualization

• If the processor supports EPT (Extended Page Table), this 2-stages 
translation is automatically done by the MMU

– EPT is not implemented yet

• VMM should implement this translation as software using Shadow Paging 
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  e  Intel VT

• Intel VT is the Intel VT-* family's generic name

– VT-x, virtualization for x86/64

– VT-d, virtualization for device (Directed I/O)

– VT-i, virtualization for Itanium

• Key factors

– VMX mode

• VMX root-operations(ring0-3)

• VMX non-root-operations(ring0-3)

– VMCS (Virtual Machine Control Structure)

– VMX Instructions set

• VMXON, VMXOFF, VMLAUNCH, VMRESUME, VMCALL, 
VMWRITE, VMREAD, VMCLEAR, VMPTRLD, VMPTRST
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     R N enum EXIT_REASON {

• Specific instructions

– CPUID, INVD, INVLPG, RDTSC, RDPMC, HLT, etc.

– All VMX Instructions

• I/O Instructions

– IN, OUT, etc.

• Exceptions

• Access to CR0-CR4, DR0-DR7, MSR

• etc.

};
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            s  la  t  M  a  Steps to launch the VMM and VM

• Confirm that the processor supports VMX operations

– CPUID

• Confirm that VMX operations are not disabled in the BIOS

– MSR_IA32_FEATURE_CONTROL

• Set the CR4.VMXE bit

• Allocate and Initialize VMXON region

– Write lower 32 bits value of VMX_BASIC_MSR to VMXON region

• Execute VMXON

– CR0.PE, CR0.PG, and CR4.VME must be set.
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              s  la  t  M  V  )Steps to launch the VM and VMM (cont.)

• Allocate VMCS regions

• Execute VMPTRLD to set Current VMCS

• Initialize Current VMCS using VMREAD and VMWRITE

– VMCS contains the EP of VMM, and Guest IP after VMLAUNCH

• Execute VMLAUNCH

– Continue to execute the guest from IP is contained in VMCS

• When VM-exit occurred, IP and other registers are switched to VMM 
ones.
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      3. it n,  I S3. Viton, Hypervisor IPS
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toViton

• IPS, which runs outside the guest

• Just a PoC, tested on Windows XP SP2 only

• Force immutability to persistent system resources

• Observe control/system registers modification, 
and VMX instructions are raised in the guest

• Offer the extensibility for monitoring the guest activity

• It is based on t orBitvisor
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  v  Bitvisor - h t . o ghttp://www.securevm.org

• The Bitvisor VMM software is developed by the Secure VM project 
centered around Tsukuba Univ. in Japan

• Features:

– Open source, BSD License

– Semi-path through model

– Type I VMM (Hypervisor model, like Xen)

– Full scratched, pure domestic production

– Support for 32/64 bits architecture in VMM 

– Support for Multi-core/processor in VMM and Guest

– Can run Windows XP/Vista as Guests without modification

– Support for PAE in the Guest

– Support for Real-mode emulation
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     V  tectWhat Viton protects/detects:

• Instructions

– Detect and block all VMX Instructions

• Registers

– Watchdog for IDTR

– Locking the MSR[SYSTENR_EIP] 

– Locking the CR0.WP Bit

• Memory

– Protect from modification

• All code sections (R-X) in ntoskrnl.exe

• IDT

• SDT

• SDT.ST (SSDT)
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Guest  m cti ity activity monitoring

• When we use the Viton, no one can modify the kernel code,
excluding the Viton.

• Viton can monitor the guest's activity by hooking the code

1. Allocate memory for detours in the guest VA space

2. Setup the detours buffer

3. Hook the target function
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                 a   o o ing   ode What can Viton do hooking the guest code ?

• Viton can retrieve the guest information in hook_code

– int3 and other inst. that cause VM-exit are useful

• So, Wouldn't you hook below functions ?

– ZwCreateProcess/ZwTerminateProcess

– ZwLoadDriver

• Then, Viton understands process, driver and other guest system 
resource information.
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Demo
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Demo



Fourteenforty Research Institute, Inc.

47

Demo
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Demo

ro_list: read only list
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    to  s. Viton vs. 

• Type I

– Easy

• Type II

– DKOM: Difficult, but possible

– KOH: Difficult, we need more research, and breakthrough

• Type III

– Easy (First come, first served)
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   4. Conclusions

• Virtualization Technology becomes a help to protect the kernel

• However, it is not a silver bullet

– Foundation for existing security solutions




