

Fourteenforty Research Institute, Inc.

2

 OutPresentation Outline

1. Review of subversive techniques in kernel space

2. Review of Virtualization Technology

3. Viton, Hypervisor IPS

4. Conclusion

Fourteenforty Research Institute, Inc.

3

• 1. Review of subversive techniques in kernel space

Fourteenforty Research Institute, Inc.

4

 em ber nn i ioRemember Joanna's classification

• Joanna Rutkowska proposed stealth malware taxonomy in November, 2006.
http://invisiblethings.org/papers/malware-taxonomy.pdf

• Type 0

• standalone malware, which never changes any system resources

• Type I

• changes the persistent system resources

• Type II

• changes the non-persistent system resources

• Type III

• malware runs outside the system

Fourteenforty Research Institute, Inc.

9

 y Type I

• It is easy to detect

• PatchGuard in Vista(x64) is a countermeasure for this type

• Many rootkit detectors have been released for this type

Fourteenforty Research Institute, Inc.

10

 y Type II

• Malware changes the non-persistent system resources

• Hooking point might be modified by the regular execution path

• DKOM(Direct Kernel Object Manipulation)

– by http://www.blackhat.com/presentations/win-usa-04/bh-win-04-
butler.pdf

• KOH(Kernel Object Hooking)

– by Greg Hoglund in Jan, 2006
http://www.rootkit.com/newsread.php?newsid=501

Fourteenforty Research Institute, Inc.

11

 M e nel j DKOM(Direct Kernel Object Manipulation)

• Malware manipulates the process list, tokens and other kernel objects
directly

• For example:

– Unlink target process from process list

– Add/remove priviledges to tokens

• DKOM's possibilities are limited

– Whether information hiding can be done depends on the
implementation of process that deals with the data

Fourteenforty Research Institute, Inc.

12

 H(nel j o ingKOH(Kernel Object Hooking)

• Remember the SDT, SSDT and other well known && persistent function
pointers?

• Do you know how many such patching points are there in kernel space?

– They might or might not be persistent

– It depends on each kernel object

• Detector has to understand all function pointers

• is_within_own_memory_range(PVOID Address) is useful, but not enough

Fourteenforty Research Institute, Inc.

14

 y Type III

• No malware exists in the system(guest)

• Malware (ab)uses Virtualization Technology

• SMM Rootkit and Firmware Rootkit might also fall into this category (a
problem of taxonomy that is not important for our cause)

• BluePill

– Original BP was presented by Joanna Rutkowska in BH-US-2006.

– (Current) New BP supports both Intel VT and AMD-v technologies,
and is also capable of on the fly loading and unloading

– BP doesn't modify any system resources on the guest

• From a technical view, BP patches the guest's PTE to hide its
loaded virtual memory from the guest

• However this doesn't really help detecting it

Fourteenforty Research Institute, Inc.

15

 y Type III (cont.)

• Vitriol

– Presented by Dino Dai Zovi, Black Hat US 2006

– VT-x rootkit, closed source

• VMM Rootkit Framework

– Posted by Shawn Embleton, Aug, 2007
http://www.rootkit.com/newsread.php?newsid=758

– This is really good start point for learning for how to create VMM

Fourteenforty Research Institute, Inc.

16

 a : to m WormCase Study: Storm Worm

• The Storm Worm first appeared in Fall, 2006

• Some variants have rootkit functions to hide from AV products

• As of Jan 2008 we can see "Happy New Year 2008" variants

• When a user clicks onto the executable,

Fourteenforty Research Institute, Inc.

17

 o mStorm Worm

1. Executable drops the system driver (.sys), and loads it into the kernel
using Service Control Manager (SCM)

2. Driver has two functions shown below

• Rootkit functions
Hide files, registry entries and connections using SSDT and IRP

hooking

• Code Injection function
Inject malicious code (not DLL) into process context of
services.exe and execute it

3. Injected code starts P2P communication

Fourteenforty Research Institute, Inc.

19

 o t u ct n .Rootkit functions (cont.)

• It hooks the IRP_DEVICE_CONTROL routine by patching the TCP
DriverObject's IRP table ("¥¥Device¥¥Tcp")

• Hide connections from netstat

But is this KOH?

YES: It modifies the IRP Table contained within the DriverObject

NO: Many people know about the existence of IRP tables

Fourteenforty Research Institute, Inc.

21

 2. c v t hni n nel Review of subversive techniques in kernel space

Fourteenforty Research Institute, Inc.

22

 e v tua a oWhat we have to consider "Virtualization"

• CPU Virtualization

– Some registers should be reserved for VMM and each VM.
GDTR, LDTR, IDTR, CR0-4, DR0-7, MSR, Segment Register, etc

– Exceptions

• Memory Virtualization

– should separate VMM memory space and each VM's memory space

• Device Virtualization

– Interrupt, I/O instructions, MMIO, DMA access

Fourteenforty Research Institute, Inc.

25

 r i l t nMemory virtualization

• If the processor supports EPT (Extended Page Table), this 2-stages
translation is automatically done by the MMU

– EPT is not implemented yet

• VMM should implement this translation as software using Shadow Paging

Fourteenforty Research Institute, Inc.

27

 e Intel VT

• Intel VT is the Intel VT-* family's generic name

– VT-x, virtualization for x86/64

– VT-d, virtualization for device (Directed I/O)

– VT-i, virtualization for Itanium

• Key factors

– VMX mode

• VMX root-operations(ring0-3)

• VMX non-root-operations(ring0-3)

– VMCS (Virtual Machine Control Structure)

– VMX Instructions set

• VMXON, VMXOFF, VMLAUNCH, VMRESUME, VMCALL,
VMWRITE, VMREAD, VMCLEAR, VMPTRLD, VMPTRST

Fourteenforty Research Institute, Inc.

29

 R N enum EXIT_REASON {

• Specific instructions

– CPUID, INVD, INVLPG, RDTSC, RDPMC, HLT, etc.

– All VMX Instructions

• I/O Instructions

– IN, OUT, etc.

• Exceptions

• Access to CR0-CR4, DR0-DR7, MSR

• etc.

};

Fourteenforty Research Institute, Inc.

30

 s la t M a Steps to launch the VMM and VM

• Confirm that the processor supports VMX operations

– CPUID

• Confirm that VMX operations are not disabled in the BIOS

– MSR_IA32_FEATURE_CONTROL

• Set the CR4.VMXE bit

• Allocate and Initialize VMXON region

– Write lower 32 bits value of VMX_BASIC_MSR to VMXON region

• Execute VMXON

– CR0.PE, CR0.PG, and CR4.VME must be set.

Fourteenforty Research Institute, Inc.

31

 s la t M V)Steps to launch the VM and VMM (cont.)

• Allocate VMCS regions

• Execute VMPTRLD to set Current VMCS

• Initialize Current VMCS using VMREAD and VMWRITE

– VMCS contains the EP of VMM, and Guest IP after VMLAUNCH

• Execute VMLAUNCH

– Continue to execute the guest from IP is contained in VMCS

• When VM-exit occurred, IP and other registers are switched to VMM
ones.

Fourteenforty Research Institute, Inc.

32

 3. it n, I S3. Viton, Hypervisor IPS

Fourteenforty Research Institute, Inc.

33

toViton

• IPS, which runs outside the guest

• Just a PoC, tested on Windows XP SP2 only

• Force immutability to persistent system resources

• Observe control/system registers modification,
and VMX instructions are raised in the guest

• Offer the extensibility for monitoring the guest activity

• It is based on t orBitvisor

Fourteenforty Research Institute, Inc.

34

 v Bitvisor - h t . o ghttp://www.securevm.org

• The Bitvisor VMM software is developed by the Secure VM project
centered around Tsukuba Univ. in Japan

• Features:

– Open source, BSD License

– Semi-path through model

– Type I VMM (Hypervisor model, like Xen)

– Full scratched, pure domestic production

– Support for 32/64 bits architecture in VMM

– Support for Multi-core/processor in VMM and Guest

– Can run Windows XP/Vista as Guests without modification

– Support for PAE in the Guest

– Support for Real-mode emulation

Fourteenforty Research Institute, Inc.

36

 V tectWhat Viton protects/detects:

• Instructions

– Detect and block all VMX Instructions

• Registers

– Watchdog for IDTR

– Locking the MSR[SYSTENR_EIP]

– Locking the CR0.WP Bit

• Memory

– Protect from modification

• All code sections (R-X) in ntoskrnl.exe

• IDT

• SDT

• SDT.ST (SSDT)

Fourteenforty Research Institute, Inc.

39

Guest m cti ity activity monitoring

• When we use the Viton, no one can modify the kernel code,
excluding the Viton.

• Viton can monitor the guest's activity by hooking the code

1. Allocate memory for detours in the guest VA space

2. Setup the detours buffer

3. Hook the target function

Fourteenforty Research Institute, Inc.

44

 a o o ing ode What can Viton do hooking the guest code ?

• Viton can retrieve the guest information in hook_code

– int3 and other inst. that cause VM-exit are useful

• So, Wouldn't you hook below functions ?

– ZwCreateProcess/ZwTerminateProcess

– ZwLoadDriver

• Then, Viton understands process, driver and other guest system
resource information.

Fourteenforty Research Institute, Inc.

45

Demo

Fourteenforty Research Institute, Inc.

46

Demo

Fourteenforty Research Institute, Inc.

47

Demo

Fourteenforty Research Institute, Inc.

49

Demo

ro_list: read only list

Fourteenforty Research Institute, Inc.

54

 to s. Viton vs.

• Type I

– Easy

• Type II

– DKOM: Difficult, but possible

– KOH: Difficult, we need more research, and breakthrough

• Type III

– Easy (First come, first served)

Fourteenforty Research Institute, Inc.

55

 4. Conclusions

• Virtualization Technology becomes a help to protect the kernel

• However, it is not a silver bullet

– Foundation for existing security solutions

