
Jack-in-the-Cache:

a new code injection technique through

modifying

X86-to-ARM translation cache

Ko Nakagawa @ FFRI Security, Inc.

Hiromitsu Oshiba @ FFRI Security, Inc.

#BHEU @BLACKHATEVENTS

#BHEU @BLACKHATEVENTS

About us

Ko Nakagawa

• Security researcher at FFRI Security, Inc.
- https://github.com/kohnakagawa

- https://linkedin.com/in/koh-nakagawa

Hiromitsu Oshiba

• Research director at FFRI Security, Inc.
- https://github.com/0x75960

- https://linkedin.com/in/hiromitsu-oshiba-072576ab

https://github.com/kohnakagawa
https://jp.linkedin.com/in/koh-nakagawa
https://github.com/0x75960
https://jp.linkedin.com/in/hiromitsu-oshiba-072576ab

#BHEU @BLACKHATEVENTS

Agenda

• Introduction to Windows 10 on ARM

•Binary translation cache file

•New code injection technique

•Use-cases

•Conclusion

#BHEU @BLACKHATEVENTS

HP ENVY x2

https://www8.hp.com/us/en/campaigns/hp-envy-x2/overview.html

https://www.microsoft.com/en-us/p/surface-pro-x/8vdnrp2m6hhc?activetab=overview

Windows 10 on ARM macOS on ARM-based Apple Silicon

https://www.youtube.com/watch?v=GEZhD3J89ZE

ARM-based laptops

https://www8.hp.com/us/en/campaigns/hp-envy-x2/overview.html
https://www.microsoft.com/en-us/p/surface-pro-x/8vdnrp2m6hhc?activetab=overview
https://www.youtube.com/watch?v=GEZhD3J89ZE

#BHEU @BLACKHATEVENTS

Difficulty in transition from Intel to ARM

We cannot use existing software for Intel on ARM-based laptops

Intel ARM

#BHEU @BLACKHATEVENTS

Solutions

Windows 10 on ARM

•x86 Win32 emulation

- JIT binary translation

macOS Big Sur

•Rosetta 2

- binary translation at install time

- JIT binary translation

https://channel9.msdn.com/Events/Build/2017/P4171

https://www.youtube.com/watch?v=GEZhD3J89ZE

https://channel9.msdn.com/Events/Build/2017/P4171
https://www.youtube.com/watch?v=GEZhD3J89ZE

#BHEU @BLACKHATEVENTS

Hmm? Binary translation? It seems to be very slow.

x86 emulation works by compiling blocks of x86 instructions into ARM64

instructions with optimizations to improve performance. A service caches

these translated blocks of code to reduce the overhead of instruction

translation and allow for optimization when the code runs again.

Solution in Windows 10 on ARM

https://docs.microsoft.com/en-us/windows/uwp/porting/apps-on-arm-x86-emulation

Translated blocks of code are cached as a file

https://docs.microsoft.com/en-us/windows/uwp/porting/apps-on-arm-x86-emulation

#BHEU @BLACKHATEVENTS

X86-To-ARM64 (XTA) cache file

Reduces much of JIT binary translation overhead

• JIT binary translation is not performed when the translation result

exists in an XTA cache file

 Improves the performance of x86 emulation

#BHEU @BLACKHATEVENTS

x86 emulation internals

Three components of x86 emulation

•xtajit.dll

- x86 emulator DLL loaded by WOW64 layer

•xtac.exe

- Compiler that creates/modifies XTA cache files

•XtaCache.exe

- Service managing XTA cache files

- It creates/modifies XTA cache files by running xtac.exe

Related work:

Cylance Research team blog

https://blogs.blackberry.com/en/2019/09/tea

rdown-windows-10-on-arm-x86-emulation

https://blogs.blackberry.com/en/2019/09/teardown-windows-10-on-arm-x86-emulation

#BHEU @BLACKHATEVENTS

Flow of execution using XTA cache file

… XtaCache.exe

x86 process memory

1. notify x86 app load

x86_app.exe xtajit.dll

ACCESSCHK.EXE.95…mp.1.jc

X86_APP.EXE.983D…mp.1.jc

…

Cache file directory

ALPC

#BHEU @BLACKHATEVENTS

Flow of execution using XTA cache file

… XtaCache.exe

x86 process memory

1. notify x86 app load

x86_app.exe xtajit.dll

2. search

ACCESSCHK.EXE.95…mp.1.jc

X86_APP.EXE.983D…mp.1.jc

…

Cache file directory

#BHEU @BLACKHATEVENTS

Flow of execution using XTA cache file

… XtaCache.exe

x86 process memory

1. notify x86 app load

x86_app.exe xtajit.dll

2. search

ACCESSCHK.EXE.95…mp.1.jc

X86_APP.EXE.983D…mp.1.jc

…

Cache file directory

Found!

#BHEU @BLACKHATEVENTS

Flow of execution using XTA cache file

… XtaCache.exe

x86 process memory

3. map to memory1. notify x86 app load

x86_app.exe xtajit.dll X86_APP.EXE.983D…mp.1.jc

2. search

ACCESSCHK.EXE.95…mp.1.jc

X86_APP.EXE.983D…mp.1.jc

…

Cache file directory

#BHEU @BLACKHATEVENTS

Flow of execution using XTA cache file

… XtaCache.exe

x86 process memory

3. map to memory

4. transfer control if needed

1. notify x86 app load

x86_app.exe xtajit.dll X86_APP.EXE.983D…mp.1.jc

2. search

ACCESSCHK.EXE.95…mp.1.jc

X86_APP.EXE.983D…mp.1.jc

…

Cache file directory

#BHEU @BLACKHATEVENTS

Where are XTA cache files?

By default, full permission is granted only to XtaCache.exe

However, it can be changed with admin-equivalent privilege

#BHEU @BLACKHATEVENTS

Name of XTA cache file (SysWOW64¥explorer.exe)

EXPLORER.EXE.70AAEAA9BDA2D87C1CB0B92DF35C4E36.2FAF48

A985E3B301168A25089DA110C0.mp.1.jc

•Name of x86 exe or dll (“explorer.exe” in this case)

•Hash value determined by file content

•Hash value determined by file path

•Number of updates of this XTA cache file

- xtac.exe updates an XTA cache file during/after emulation to add newly

translated blocks of code (explained later)

#BHEU @BLACKHATEVENTS

How does XtaCache.exe search XTA cache files?

Searches cache files by file name・file content・file path

•Number of updates is specified as wildcard

Uses cache file whose number of updates is largest

•Does not use the cache files whose number of updates is smaller

- These files are removed later

#BHEU @BLACKHATEVENTS

Structure of XTA cache file

Header Header holding offsets to the following blocks

Code for (1) bridging between XTA cache and

xtajit.dll, (2) address lookup operation, and so on

Translated ARM64 code

NT path name of x86 app

Address pairs holding the relation between the

RVAs of x86 app and the offsets of translated code

BLCK Stub

Translated code

…

Repeated for the number of updates

Address pairs

NT path name

#BHEU @BLACKHATEVENTS

Structure of XTA cache file

Header Header holding offsets to the following blocks

Code for (1) bridging between XTA cache and

xtajit.dll, (2) address lookup operation, and so on

Translated ARM64 code

NT path name of x86 app

Address pairs holding the relation between the

RVAs of x86 app and the offsets of translated code

BLCK Stub

Translated code

…

Repeated for the number of updates

Address pairs

NT path name

See appendix for more details

#BHEU @BLACKHATEVENTS

Structure of XTA cache file

Header

BLCK Stub

Translated code

…

Repeated for the number of updates

Example of translated ARM64 assembly

Translated code exists without

obfuscation and encryption
Address pairs

NT path name

#BHEU @BLACKHATEVENTS

ARM64 general-purpose register during emulation
ARM64 x86

w0 ecx

w1 edx

w9 eip

w19 esi

w20 edi

w21 ebx

w27 eax

w28 esp

w29 ebp

Original x86Translated ARM64

Context is restored/saved to Wow64Context structure

Context is restored/saved to Wow64Context structure

#BHEU @BLACKHATEVENTS

xtac.exe updates XTA cache file to add newly translated code

The previous translation result is copied to the new cache file

• to reduce the amount of binary translation by xtac

•But small patches are applied to the previous translation result

See appendix for more details

#BHEU @BLACKHATEVENTS

Before update After update

xtac.exe adds newly-translated code to

the end of previous translation result

Header

BLCK Stub

Translated code

Address pairs

NT path name

Header

BLCK Stub

Translated code

Address pairs

NT path name

BLCK Stub

Translated code

Copied with

small patches

#BHEU @BLACKHATEVENTS

Prevention of XTA cache file update

xtac.exe uses this member for getting the

positions to be patched.

Assigning an invalid value (e.g., 0xffffffff)

to this member crashes xtac.exe and

prevents the update.

Note: this change does not affect the

cache file loading and execution of x86

app by xtajit

#BHEU @BLACKHATEVENTS

Quick recap: XTA cache file

It contains translated ARM64 code

•Without obfuscation and encryption

•During emulation, it is mapped to the memory

It is updated during/after emulation

•But this update can be prevented by modifying file header

•Although file header is modified, xtajit.dll can load this cache file

#BHEU @BLACKHATEVENTS

Quick recap: XTA cache file

It contains translated ARM64 code

•Without obfuscation and encryption

•During emulation, it is mapped to the memory

It is updated during emulation

•But this update can be prevented by modifying file header

•Although file header is modified, xtajit.dll can load this

#BHEU @BLACKHATEVENTS

Quick recap: XTA cache file

It contains translated ARM64 code

•Without obfuscation and encryption

•During emulation, it is mapped to the memory

It is updated during emulation

•But this update can be prevented by modifying file header

•Although file header is modified, xtajit.dll can load this

What happens if the XTA cache file is modified?

#BHEU @BLACKHATEVENTS

Flow of execution when XTA cache file is modified

… XtaCache.exe

x86 process memory

x86_app.exe xtajit.dll

ACCESSCHK.EXE.95…mp.1.jc

…

Cache file directory

X86_APP.EXE.983D…mp.1.jc

#BHEU @BLACKHATEVENTS

Flow of execution when XTA cache file is modified

… XtaCache.exe

x86 process memory

x86_app.exe xtajit.dll

ACCESSCHK.EXE.95…mp.1.jc

…

Cache file directory

Injects code into the cache file

X86_APP.EXE.983D…mp.1.jcinjected code

#BHEU @BLACKHATEVENTS

Flow of execution when XTA cache file is modified

… XtaCache.exe

x86 process memory

x86_app.exe xtajit.dll

ACCESSCHK.EXE.95…mp.1.jc

…

Cache file directory

Injects code into the cache file

X86_APP.EXE.983D…mp.1.jcinjected code

3. map to memory1. notify x86 app load

2. search

X86_APP.EXE.983D…mp.1.jcinjected code

#BHEU @BLACKHATEVENTS

Flow of execution when XTA cache file is modified

… XtaCache.exe

x86 process memory

x86_app.exe xtajit.dll

ACCESSCHK.EXE.95…mp.1.jc

…

Cache file directory

Injects code into the cache file

X86_APP.EXE.983D…mp.1.jcinjected code

3. map to memory1. notify x86 app load

2. search

X86_APP.EXE.983D…mp.1.jcinjected code

4. transfer control if needed

#BHEU @BLACKHATEVENTS

Flow of execution when XTA cache file is modified

… XtaCache.exe

x86 process memory

x86_app.exe xtajit.dll

ACCESSCHK.EXE.95…mp.1.jc

…

Cache file directory

Injects code into the cache file

X86_APP.EXE.983D…mp.1.jcinjected code

3. map to memory1. notify x86 app load

2. search

X86_APP.EXE.983D…mp.1.jcinjected code

4. transfer control if needed

Injected code is executed

through usual emulation process

#BHEU @BLACKHATEVENTS

What happens when the XTA cache file is modified?

Code in the XTA cache file is executed even though modified

•because the integrity of XTA cache file is not checked

No limitation for the embeddable content (size or encoding)

•An attacker can embed shellcode in the cache file and run it

through emulation

- But there are some limitations to callable APIs for shellcode (next slide)

We name this code injection XTA cache hijacking

#BHEU @BLACKHATEVENTS

Limitations of callable APIs

Some native APIs of DLLs in System32 are not callable

•E.g., GDI, Winsock, …

APIs of WOW64 layers are (of course) callable

#BHEU @BLACKHATEVENTS

Features of XTA cache hijacking

Three features of XTA cache hijacking

•Difficulty in detecting

•Difficulty in root cause analysis

•Persistence

#BHEU @BLACKHATEVENTS

Difficulty in detecting

Accesses to the target process are not needed

•Code injection is performed without:

- acquisition of the target process handle

- suspicious API calls

#BHEU @BLACKHATEVENTS

Difficulty in root cause analysis

Cannot determine the root cause by examining the x86 app

•Since the executed code is in the XTA cache file, there are no

suspicious indicators in the x86 app

🔍

Hmm, I cannot find any suspicious

indicators in this executable.

x86_mal.exe Incident response team

#BHEU @BLACKHATEVENTS

Difficulty in root cause analysis (contd.)

If any breakpoint is set to the x86 app, the XTA cache file of

x86 app is not used during emulation

•Therefore, analysts cannot see the suspicious behaviors when

setting any breakpoint by debugger

•This anti-debugging feature makes analysis difficult

#BHEU @BLACKHATEVENTS

Persistence

Code injection is persisted even after OS restart

•Code injection is automatically performed when the same x86 EXE

or DLL runs again

•Updates of cache files can be prevented by modifying header

- An attacker can achieve persistence by preventing cache file update

#BHEU @BLACKHATEVENTS

Positions in MITRE ATT&CK

XTA Cache

Hijacking

XTA Cache

Hijacking

XTA Cache

Hijacking

https://attack.mitre.org/

https://attack.mitre.org/

#BHEU @BLACKHATEVENTS

Persistence

Used as a persistence method

•Can hide malicious shellcode in XTA cache file

XTA Cache

Hijacking

XTA Cache

Hijacking

XTA Cache

Hijacking

#BHEU @BLACKHATEVENTS

Defense Evasion

Used to mask malicious code

•Can run malicious code as a legitimate process

XTA Cache

Hijacking

XTA Cache

Hijacking

XTA Cache

Hijacking

#BHEU @BLACKHATEVENTS

Credential Access

Used as a credential access method

•Can inject API hooking code into XTA cache files of DLLs that are

used in a browser

- Steal credentials / modify web pages

XTA Cache

Hijacking

XTA Cache

Hijacking

XTA Cache

Hijacking

#BHEU @BLACKHATEVENTS

You might think that...

Hmm? XTA cache hijacking seems to be similar to other

conventional code injection techniques.

What makes XTA cache hijacking so special?

Why is it so interesting?

#BHEU @BLACKHATEVENTS

Ko -> Hiromitsu

#BHEU @BLACKHATEVENTS

It’s a new technique

- targets new OS and its technology (Win10 ARM, xtajit)

- has persistence

- makes investigations difficult

Good. But.. that‘s all?

#BHEU @BLACKHATEVENTS

Remind that..

It is realized by modifying cache of translation result

•They are ARM64 machine codes

We can change the behavior of x86 processes

w/o any modifications to x86 instructions!

#BHEU @BLACKHATEVENTS

What’s happening?

ARM64 CPUs cannot execute x86 instructions directly

•unlike x86-64 CPUs

x86 instructions are only referenced when translating

• If already cache exist, they are not referenced

The instructions in the cache take precedence

•Even if the behavior of the cache and the original are different..

#BHEU @BLACKHATEVENTS

Side effect: Invisible Execution

There are no changes for x86 instructions on memory

Execution of payloads is invisible to x86 layer

•The execution state on ARM64 layer is invisible to x86 layer

- Even if you follow the execution with debugger,

you can see unmodified x86 instructions only

#BHEU @BLACKHATEVENTS

demo

#BHEU @BLACKHATEVENTS

Use-case: Invisible API Hook

We can detect hooks with checking the beginning of API

•commonly used method modifies the instruction

at beginning of the function

We can avoid the detection and the tracing for hooks!

•by applying our method to CHPE DLLs

#BHEU @BLACKHATEVENTS

CHPE DLLs

bridge DLLs between x86 and ARM64

•used in x86 processes on Win10 ARM

Exist for some DLLs frequently used by applications

•e.g., kernel32.dll, user32.dll, ntdll.dll

Have x86 stubs for each API

•Of course, caches are generated for these x86 instructions

#BHEU @BLACKHATEVENTS

Bonus

Find out path executed from the existence of the cache

•No execution, no cache

cache exist

cache exist cache not exist

#BHEU @BLACKHATEVENTS

Bonus

Find out path executed from the existence of the cache

•Non-invasive coverage measurement

- E.g., fuzzing? (see appendix for more details)

• Incident Response

- E.g., Investigate what the RAT did without a communications log

Tool for this will also be available!

#BHEU @BLACKHATEVENTS

Conclusion

New code injection technique for Windows10 on ARM

•exploits the cache in x86 to ARM64 JIT Translation

•has a unique side effect and some benefits

#BHEU @BLACKHATEVENTS

Advices

For one developing similar system

•Ensure the integrity of cache

- This technique requires privilege escalation, but still worth

Everyone

•Be Aware of the threat

- It will be difficult to find out on first sight if one don’t know about this

#BHEU @BLACKHATEVENTS

PoC code and some analysis tools are available at

•Some tools to manipulate XTA cache files

- https://github.com/FFRI/XtaTools

•Analysis tool for XTA cache files

- https://github.com/FFRI/radare2

https://github.com/FFRI/XtaTools
https://github.com/FFRI/radare2

#BHEU @BLACKHATEVENTS

Thank you!

Any questions and comments to

•Twitter DM: @FFRI_Research

•e-mail: research-feedback@ffri.jp

mailto:research-feedback@ffri.jp

#BHEU @BLACKHATEVENTS

Acknowledgements

Thank my colleagues for giving some helpful comments on

this material.

#BHEU @BLACKHATEVENTS

Appendix

#BHEU @BLACKHATEVENTS

Structure of XTA cache file

#BHEU @BLACKHATEVENTS

XTA cache file header and its members

#BHEU @BLACKHATEVENTS

Example:

XTA cache file of SystemRoot¥SysChpe32¥kernelbase.dll

file name:
KERNELBASE.DLL.152D9019D54A662A18EC7A673ECB130F.DB966B70C90268F5B3A
22AF2FFD62FB9.mp.3.jc

#BHEU @BLACKHATEVENTS

KERNELBASE.DLL.152D9019D54A662A18EC7A673ECB130F.DB966B70C90268F5B3A22AF2FFD62FB9.mp.3.jc

Magic (always XTAC)

Module name of x86 app

Address pairs

NT path name of x86 app

x86 RVA ARM64 RVA

#BHEU @BLACKHATEVENTS

KERNELBASE.DLL.152D9019D54A662A18EC7A673ECB130F.DB966B70C90268F5B3A22AF2FFD62FB9.mp.3.jc

The number of updates is 3Header

BLCK Stub #1

Translated code #1

Address pairs

NT path name

BLCK Stub #3

Translated code #3

BLCK Stub #2

Translated code #2

BLCK Stub and translated code are

repeated for three times.

Each BLCK Stub contains the

offset to the next BLCK stub

#BHEU @BLACKHATEVENTS

KERNELBASE.DLL.152D9019D54A662A18EC7A673ECB130F.DB966B70C90268F5B3A22AF2FFD62FB9.mp.3.jc

Cache file version

Cache file is updated or not

(1: updated, 0: not-updated)

BLCK Stub

Structure of BLCK Stub is …

#BHEU @BLACKHATEVENTS

KERNELBASE.DLL.152D9019D54A662A18EC7A673ECB130F.DB966B70C90268F5B3A22AF2FFD62FB9.mp.3.jc

Cache file version

Cache file is updated or not

(1: updated, 0: not-updated)

BLCK Stub

It contains offset to the next BLCK Stub

Structure of BLCK Stub is …

#BHEU @BLACKHATEVENTS

Pointer to next entry

Offset to next entry

(relative to BLCK Stub

code’s start address)

BLCK Stub code

KERNELBASE.DLL.152D9019D54A662A18EC7A673ECB130F.DB966B70C90268F5B3A22AF2FFD62FB9.mp.3.jc

Relation among three BLCK Stub #1, #2, and #3

#1

#2

#3

#BHEU @BLACKHATEVENTS

CHPE DLL

#BHEU @BLACKHATEVENTS

Compiled-Hybrid-PE (CHPE) DLL

looks as if x86 PE file, but contains x86 and ARM64 code [1, 2]

•Small subset of DLLs frequently used by applications

Exported APIs contain x86 jump stubs to ARM64 function bodies

• JIT translation is performed only for these x86 stubs

- It reduces the amount of JIT binary translation

[1] https://wbenny.github.io/2018/11/04/wow64-internals.html

[2] https://blogs.blackberry.com/en/2019/09/teardown-windows-10-on-arm-x86-emulation

https://wbenny.github.io/2018/11/04/wow64-internals.html
https://blogs.blackberry.com/en/2019/09/teardown-windows-10-on-arm-x86-emulation

#BHEU @BLACKHATEVENTS

.hexpthk

.text

Example: MessageBoxA @ SystemRoot¥SysChpe32¥user32.dll

x86

ARM64

jumps to body

Exported function

Function body

contains x86 jump stubs

contains ARM64 function bodies

#BHEU @BLACKHATEVENTS

Example: MessageBoxA @ SystemRoot¥SysChpe32¥user32.dll

XTA cache file

contains only the

translation result

of jump stubs
xtac.exe translates this code

#BHEU @BLACKHATEVENTS

API Hooking through modifying jump stubs

We show an example of invisible API hooking through

modifying MessageBoxA’s jump stub

#BHEU @BLACKHATEVENTS

API Hooking through modifying the jump stub code

Example: cache file of MessageBoxA in the previous slide

Second argument is modified!

Displayed message changes

Hooking

code is

injected

#BHEU @BLACKHATEVENTS

API Hooking example is included in

https://github.com/FFRI/XtaTools/tree/main/example

https://github.com/FFRI/XtaTools/tree/main/example

#BHEU @BLACKHATEVENTS

Small patches applied during XTA cache file update

#BHEU @BLACKHATEVENTS

Update feature of XTA cache files

xtac.exe updates XTA cache files to add newly-translated result

Previous translation result is copied to new cache file

• to reduce the amount of binary translation by xtac.exe

Before copying, small patches are applied to previous result

#BHEU @BLACKHATEVENTS

Update feature of XTA cache files

xtac.exe updates XTA cache files to add newly-translated result

Previous translation result is copied to new cache file

• to reduce the amount of binary translation by xtac.exe

Before copying, small patches are applied to previous result

What are these patches?

#BHEU @BLACKHATEVENTS

Example program (Branch.exe)

calls different function depending on

the number of arguments

• assuming that func0, func1, and func2 are

not inlined by the compiler optimization

We can get three different cache files by

changing the number of arguments

xtac makes BRANCH.EXE.*.*.mp.1.jc

#BHEU @BLACKHATEVENTS

Example program (Branch.exe)

calls different function depending on

the number of arguments

• assuming that func0, func1, and func2 are

not inlined by the compiler optimization

We can get three different cache files by

changing the number of arguments

xtac makes BRANCH.EXE.*.*.mp.1.jc

xtac updates the cache file and makes BRANCH.EXE.*.*.mp.2.jc

#BHEU @BLACKHATEVENTS

Example program (Branch.exe)

calls different function depending on

the number of arguments

• assuming that func0, func1, and func2 are

not inlined by the compiler optimization

We can get three different cache files by

changing the number of arguments

xtac makes BRANCH.EXE.*.*.mp.1.jc

xtac updates the cache file and makes BRANCH.EXE.*.*.mp.2.jc

xtac updates the cache file and makes BRANCH.EXE.*.*.mp.3.jc

#BHEU @BLACKHATEVENTS

Example program (Branch.exe)

calls different function depending on

the number of arguments

• assuming that func0, func1, and func2 are

not inlined by the compiler optimization

We can get three different cache files by

changing the number of arguments

xtac makes BRANCH.EXE.*.*.mp.1.jc

xtac updates the cache file and makes BRANCH.EXE.*.*.mp.2.jc

xtac updates the cache file and makes BRANCH.EXE.*.*.mp.3.jc

These two files are

used for explanation

#BHEU @BLACKHATEVENTS

of updates is 2

of updates is 3

Difference between two XTA cache files

jumps to the JIT translation result on heap

jumps to the translation result of cache file

#BHEU @BLACKHATEVENTS

Difference between two XTA cache files

Small patch is applied by

xtac.exe after the update

#BHEU @BLACKHATEVENTS

What is this patch for?

BRANCH.EXE.*.*.mp.3.jc contains translation result of func2, but

BRANCH.*.*.mp.2.jc does not contain translation result of func2

• because translation result of func2 is added after the update of BRANCH.*.*.mp.2.jc

When using BRANCH.EXE.*.*.mp.2.jc …

• should jump to the JIT translation result on heap when calling func2

When using BRANCH.EXE.*.*.mp.3.jc …

• can directly jump to the translation result of XTA cache file when calling func2

This patch changes the jump to func2 from …

• JIT translation result on heap -> translation result of XTA cache file

#BHEU @BLACKHATEVENTS

What is this patch for?

BRANCH.EXE.*.*.mp.3.jc contains translation result of func2, but

BRANCH.*.*.mp.2.jc does not contain translation result of func2

• because translation result of func2 is added after the update of BRANCH.*.*.mp.2.jc

When using BRANCH.EXE.*.*.mp.2.jc …

• should jump to the JIT translation result on heap when calling func2

When using BRANCH.EXE.*.*.mp.3.jc …

• can directly jump to the translation result of XTA cache file when calling func2

This patch changes the jump to func2 from …

• JIT translation result on heap -> translation result of XTA cache file

It reduces the amount of JIT binary translation

#BHEU @BLACKHATEVENTS

How does xtac.exe get the positions to be patched?

XTA cache file header has the member to access the positions to be patched

• These positions are stored as a linked list (we are calling it XTAC linked list)

The linked list can be accessed by the following cache file header members

...

#BHEU @BLACKHATEVENTS

XTAC linked list

Pointer to

XTAC linked list head

First entry of XTAC linked list

Array of 32bit integer (its length is 3 or 2)
Note: above disassembly is the same as previous one

#BHEU @BLACKHATEVENTS

Member of XTAC linked list entry

Note: above disassembly is the same as previous one

b0000037: Meta data (see next slide) and quarter of offset to the next entry

00001070: x86 RVA of jump address (containing RVA of func2 in this case)

000010a0: x86 RVA of return address (containing RVA of return address of this call site)

As uint32 array

call func2 (0x401070)

First entry of XTAC linked list

#BHEU @BLACKHATEVENTS

Member of XTAC linked list entry (contd.)

0xb (in hex) -> 0b1011 (in binary)

If the meta data is 0x1, it contains only jump address (no return address)

Contains

jump address

Contains

return address

Unknown

b0000037: Meta data and quarter of offset to the next entry

Meta data is 0x1, and it only contains x86 RVA of jump

address (its value is 0x1337 in this case)

It does not contain x86 RVA of return address

#BHEU @BLACKHATEVENTS

b0000037: Meta data and quarter of offset to the next entry

Offset to the next entry of linked list

current offset + 4 * 0x37

current offset + 4 * 0x79

10000079: Meta data and quarter of offset to the next entry

Each entry has quarter of offset to the next entry.

Each entry of XTAC linked list can be enumerated

using this offset value.

#BHEU @BLACKHATEVENTS

Technical details of XTA cache hijacking

#BHEU @BLACKHATEVENTS

Notes about injectable payload of XTA cache hijacking

There are no restrictions of:

• size of code

• encoding of code

Both x86 and ARM64 code can be injected!

• x86 shellcode can be executed by calling thread creation function (such as

CreateThread and NtCreateThread)

#BHEU @BLACKHATEVENTS

Notes about building shellcode for XTA cache hijacking

Pay special attentions about Windows API calls

• Windows API calls through emulation layer is preferred

- Function call through emulation layer unlikely causes program crashes

- Function call that is performed not through emulation layer causes program crashes in some cases

(this limitation has already been noted here. APIs of GDI or Winsock are not callable.)

#BHEU @BLACKHATEVENTS

Steps to call Windows API through emulation layer

1. push function arguments to stack (x86 calling convention)

2. push x86 return address to stack (lr register is not used!)

3. get x86 Windows API address through accessing IAT (or PEB)

4. set program counter (w9 register during emulation) to Windows

API address

5. call API through a specific function in BLCK stub
(see next slide)

#BHEU @BLACKHATEVENTS

Example of Windows API call through emulation layer

Cache file of this sample program (show only translation result of func0)

Call MessageBoxA function through

the function in BLCK stub

Set function arguments (push four

function arguments to stack)

• Access IAT and get x86

MessageBoxA address

• push return address

Set program counter to

MessageBoxA address

#BHEU @BLACKHATEVENTS

Some code injection examples are included in …

https://github.com/FFRI/XtaTools/tree/main/example

We also have provided tools to support for building

shellcode in the above repository

https://github.com/FFRI/XtaTools/tree/main/example

#BHEU @BLACKHATEVENTS

Code coverage measurement using XTA cache file

#BHEU @BLACKHATEVENTS

Code coverage can be obtained by examining XTA cache file

because XTA cache file holds x86 RVA addresses that

executed

• explained in this slide

Before demonstrating this, we will explain what kind of instruction

ends the binary translation unit

#BHEU @BLACKHATEVENTS

Binary translation unit

x86 code is translated for each code block

•Branch instructions, such as call and ret, end one code block

•However, there are some exceptions:

- In some case, jmp instructions do not end the code block

- Some instructions such as x87 instructions and software interrupt

instructions end the code block

#BHEU @BLACKHATEVENTS

Example

x86 code of example program

NOTE: func0’s address is 0x401040

• “call” and “ret” end translation unit

• “jnz” does not end translation unit

in this example

Translated ARM64 code

end of translation unit

#BHEU @BLACKHATEVENTS

Example of code coverage measure

Uses BRANCH.EXE.*.*.mp.1.jc of sample program for the demonstration

Address pairs (RVA to image base)

Passed x86 RVAs

0x401090

0x401080

#BHEU @BLACKHATEVENTS

Notes about code coverage measurement

Function coverage can be obtained, but branch coverage can

be partially obtained

•because some branch instructions, such as jmp, do not end

translation unit in some case (like previous example)

This method has non-invasive feature

•Binary instrumentation is not needed

