Black Hat Abu Dhabi 2011

Yet Another Android Rootkit

/protecting/system/is/not/enough/

Fourteenforty Research Institute, Inc.
http://www.fourteenforty.jp

FFR
\

Introduction: rooting Android

e Gaining Administrative Privileges in Android OS
— Normally, root cannot be used by Apps
— Gaining root Privilege using...
e Local Exploits (dangerous)
e Fake Firmware Updates (relatively safe)

e What for?
— Customization, Overclocking
— Malicious Use (e.g. DroidDream)

e rootin Android platform works differently
— Permission Checks
— Software-based UID/PID checks

FFR
\

Introduction: Japanese smartphones

e Vendors and Careers want to:
— Protect Users
— Protect Career-specific / Vendor-specific Services
III

— Ensure Smartphones are not Altered and “Radio Lega
— Protect their Business Model ©

e Answer: “Protect Smartphones”
— Prevent Firmware Modification

— Patch Framework and Kernel in order to Secure the device

FFR
Agenda o

rooting and Android Security
— Android Internals and Security Model
— Bypassing Security and Gaining Privileges

Vendor-Specific Protection
— Kernel-based Mechanism

Yet Another Android Rootkit
— User-Mode Rootkit Bypassing Vendor-Specific Protections
— Hook User Applications

So what was wrong?
— Open source, Closed platform

FFR
\

rooting Android is not the end of the story.

ROOTING AND ANDROID SECURITY

FFR
\

rooting is Sometimes Easy

e Five known root exploits affecting unmodified version of Android
— CVE-2009-1185 (exploid)
— [no CVE number] (rage against the cage)
— CVE-2011-1149 (psneuter)
— CVE-2011-1823 (GingerBreak)
— CVE-2011-3874 (zergRush)

e More of that: Chip/Vendor-specific Vulnerabilities

FFR

rooting : Vulnerabilities (1)

e Logic Errors in suid programs
— Android Tablet [xxx]: OS command injection

[REDACTED]

The attacker can invoke arbitrary command in root privileges.

FFR

rooting : Vulnerabilities (2)

e Improper User-supplied buffer access
— Android smartphone [xxx]: Sensor Device Driver

[REDACTED]

The attacker write [REDACTED] to arbitrary user memory, bypassing copy-on-write.
Modifying setuid function (which affects all processes) can generate root-privilege processes.

FFR
\

rooting isn’t the end

e Gaining Privileges in Android system
— root user in Android system is slightly different
— The attacker want to take over the whole system

e Vendor-Specific Protection
— DroidDream won’t work properly on some Japanese Android phones
— /system may be Read-Only

e |s it possible to take over the system in protected smartphones?

Android Internals: App Model
[Package.apk

Install

Invoke Application

Callback on Event

e Applications are contained in the Package

e Register how “classes” are invoked by Manifest
— System calls application “classes” if requested
— Activity, Broadcast, ...

Android Internals: Package

(APK File (ZIP format)

AndroidManifest.xml
WERITEN

classes.dex
(Program)

e Package itself is only a ZIP archive
e AndroidManifest.xml (Manifest)
— Application information, permissions
— How classes can be called (Activity, BroadcastReceiver...)

Android Internals: App Model in File System

root file system (/) system partition (/system)

init

system/ L

vendor/

vendor/ (symlinked to /vendor)

=\ =)
‘\. 1 : | .\A-
N ot Iib/

.. 1f Y T 7
data partition (/data) J‘v(‘d{)‘,‘ Trusted by App System

N\

M-
| Contains Dalvik Code

. Contains Native Code

4 DI .
(_}C\Ld/

init.rc

default.prop

FFR

Android Internals: App Model in Lower Layer

init Process Launches
some Native Services

init (PID=1) l &

Zygote Daemon

System Server (serves Services) is
directly forked from Zygote Daemon

e |mportant Processes are:
— init (The root of all processes)
— Zygote Daemon (The root of Android Apps)

— System Server (serves many System Services)

All normal Apps are forked from
Zygote Daemon when requested

Android Internals: Zygote

gote (app_process

Zygote Daemon

fork and specialize
for new process

Preloaded Libraries
(including Dalvik VM itself)

Invocation Request
(UNIX Domain Socket)

/dev/socket/zygote
(POSIX permission: 0666)

s

System Server

V=

App?2

_)FF‘* %gﬁﬁ

“““- —————

\

J Shared Memory

—

FFR_
Android Security: Model

e Android Permission and Protection
+ Grant by Package Information (Permission Information)
— Restrict by Package Location (System or User)
— Restrict by Package Signature
+ Grant by UID/PID (Backdoor?)
e Priorities of Activity (User-Interface Element)
+ Grant by Package Information (Intent Filters)
— Restrict by Package Location (System Only)

e |Legacy Linux Security Model
— Grant/Restrict: UID/GID/PID...

Android Security: Permission

The Internet

e Abstract “Capability” in Android System

— More than 100 (Internet connection, retrieve phone number...)
e Permissions Checking

— Software Checks

— GID Checks (some permissions are associated with GIDs)

Android Security: Permission Protection

INSTALL PACKAGES permission

INSTALL_PACKAGES

System App

e Permission for User App is Restricted
— Some permissions are “protected”
e Protection Level
— Package Location (signatureOrSystem)
— Package Signature (signature, signatureOrSystem)

Android Security: Permission Protection

INSTALL PACKAGES permission

UID=0 (root)

User App System App

e All Permissions are granted for root processes
— Permission Checks are not really Performed

e GingerMaster (malware) utilizes this behavior
— GingerMaster calls pm command via root shell script
— pm s actually a Dalvik program

Android Internals: Activity

(

(Choose Apps)

Post to Twitter

+Intent: SEND; TEXT
___—d

Intent and multiple
applications (Activities)

e Activity = Unit of “Action” with User Interface

— Specifying object type (target) and action,
Activity is called by the system automatically

FFR

Android Security: Activity Priorities -
(High Priority D
User Activity %}I System Activity = = —>I User Activity
a— L 2
| User Activity User Activity

e Prevent Activity Hooking

— High-priority Activity can hide lower Activities
e Only System Packages can use Higher Priority
— e.g. Android Market (Vending.apk)

FFR
Bypassing Security: Activity Priorities

P=0 P=0

%)I System Activity = = —>I User Activity

Browser Hooks

e Simply need to write System Locations

— /system/app, /vendor/app... (Normally write-protected)
e DEMO

FFR
\

Breaking Security: root can simply...

Write System Partition
— Overwrite Framework, Applications

Use chroot

— Make fake root and make system partition virtually
e Use ptrace
— Inject Malicious Hooks

root can spoil Android security mechanism.
— Orisit?

FFR

AOSP is not the everything.

VENDOR-SPECIFIC PROTECTION

FFR
\

Vendor-Specific Protection

e Some Android devices have Additional Security Feature

— Restrict root privileges to prevent devices to be overwritten
e Modification to the Kernel / Board

— NAND Lock

— Secure [Authenticated] Boot

— Integrity Checking
— Linux Security Modules (LSM)

FFR\
Vendor-Specific: NAND Lock

Reject all WRITE requests to important regions
— Boot Loader
— System Partition
— Recovery Partition

Implemented as a NAND driver / LSM feature

pros. Strong
— Prohibits ALL illegal writes in kernel mode

cons. Does not Protect Memory
— Does not protect mount points as well
— Still can use ptrace [/ chroot [pivot root

FFR
N\

Vendor-Specific: Secure Boot

e Prevent Unsigned Boot Loader / Kernel to be Executed
— Hardware Implementation:
e e.g.nVidia Tegra
— Software (Boot Loader) Implementation:
e e.g. HTC Vision (Qualcomm’s Implementation)

e pros. Hard to Defeat
— Haven’t defeated directly

e cons. Only Protects Boot Loader / Kernel
— Does not Protect On-Memory Boot Loader / Kernel
— Most implementations does not Protect System Partition

FFR
N\

Vendor-Specific: Integrity Verification

Verify loaded packages / programs are legitimate
— Restrict some features if untrusted packages / programs are loaded

Sharp Corp. : Sphinx (Digest Manager)
— Protected Storage in Kernel Mode
— Digest Verifier in User-mode (dgstmgrd)
e Exports Content Provider

pros. Ability to use Digital Signatures

cons. Easy to avoid if processes can be compromised
— e.g.ptrace

FFR
N\

Vendor-Specific: Linux Security Modules (1)

Security Framework in Linux Kernel
— Used by SELinux (for example)
e |LSM to Protect Android System

e Sharp Corp. : Deckard LSM / Miyabi LSM
— Protect Mount Point (/system)
— Prohibit ptrace
— Prohibit chroot, pivot_root...

e Fujitsu Toshiba Mobile Communications : fjsec
— Protect Mount Point (/system) and the FeliCa [subset of NFC] device
— Prohibit pivot root
— Path-based / Policy-based Restrictions

e Kyocera Corp. : KCLSM

FFR
N\

Vendor-Specific: Linux Security Modules (2)

e LSM (and NAND lock) Stops DroidDream

— DroidDream tries to remount /system read-write
but it is prohibited by the LSM

e pros. Mandatory and Strong
— Difficult to Defeat
— Capable to Hook System Calls

e cons. Difficult to Protect “Everything”
— ...unless you know all about Android Internals
— That could lead to LSM bypassing
e Some holes were fixed though...

FFR\
Bypassing All Protections

e Restrictions
— No Kernel-Mode
— No /proc/*/mem, /dev/*mem
— No ptrace
— No chroot, pivot_root
— No writes to system partitions (/system)

e But Assume if the attacker can gain root Privileges
— Possibility to take over whole system

e User-Mode Rootkit

FFR
N

/protecting/system/is/not/enough/

YET ANOTHER ANDROID ROOTKIT

Gaining root

Injecting Hooks: 0 out of 3

Taint Zygote

Having Fun!

i
i

S

Modify Dalvik State

b-2

Replace Class

FFR\
Injecting Hooks: Taint Zygote (1)

e Facts:
— All normal Android Apps are forked from Zygote Daemon
— Zygote Daemon forks child on request through UNIX-domain socket

e Two plans:
— Plan A: Hooking UNIX-domain Socket
e Stealthy
— Plan B: Generating two Zygote processes
e Easy to implement

e Flexible

Injecting Hooks: Taint Zygote (Plan A - 1)

(Zygote Daemc

bind: TO
listen: T1

|(System Server J

/dev/socket/zygote connect: T2

e Exploit race-condition during Initialization of Zygote Daemon
— Time until the first process is requested
— Window of Vulnerability is very wide (almost 2~3 seconds)

Injecting Hooks: Taint Zygote (Plan A - 2)

bind: TO
init (PID=1) Pass file descriptor
to new Zygote Daemon AT
Initialization
. (Preloading Classes, GC...)
listen: T1
—

Zygote Daemon) ()—(—

Start System Server
(it does not use socket)

connect: T2

System Server

Window of Vulnerability

<€

>

e Exploit race-condition during Initialization of Zygote Daemon
— Time until the first process is requested

— Window of Vulnerability is very wide (almost 2~3 seconds)

Injecting Hooks: Taint Zygote (Plan A - 3)

Modify Request to Inject
Payload written in Java

(Zygote D

/dev/socket/zygote [

Rootkit Injector

o

(moved)

/dev/socket/zygote
(new; infected)

G

System Server J

e Perform Man-in-the-Middle Attack
— System Server refers Rootkit’s Socket

e Rootkit Injector can restore original Socket to make it stealth
— New Apps are requested from one connection between System Server

Injecting Hooks: Taint Zygote (Plan B)

/dev/socket/zygote
(moved or deleted)

(Zygote Daemon

7| Performs like original Zygote
(but can perform malicious)

{ System Server }

[Infected Zygo

/dev/socket/zygote
(new; infected)

e Pause original Zygote Daemon
e Launch Tainted instance of Zygote
— Many ways to launch tainted Zygote

e Replace socket with rootkit’s one

Injecting Hooks: 1 out of 3

Gaining root Having Fun!
Taint Zygote Modify Dalvik State == Replace Class

e wo T e g g g g o b Taint Zygote to
{ Tainted zygote ; §
\ Yg make tainted processes

Tainted Process

N

Rootkit Payload

Real Program

C .)

\ J

FFRX
Injecting Hooks: Modify Dalvik State '

e) r B
libdvm.so _léfstruct DvmGlobals _lé struct HashTable
loadedClasses info: Class A
| Dalvik VM Global State All Classes Information info: Class B
C)| | C) C o oo
Modify Class Metadata
. J N J - to Inject Hooks

e Assume: The attacker can execute malicious Java class
e Modify Dalvik VM state to inject hooks

— Read/Write arbitrary memory required

— sun.misc.Unsafe class

e Dalvik VM (libdvm.so) exports many symbols
— Including its Global State (gDvm)

— Modifying gDvm enables hook injection

Injecting Hooks: 2 out of 3

Gaining root

Taint Zygote

~ ~ Taint Zygote to
[Tainted zygote) -
\ Y& make tainted processes

{

Modify Dalvik State

\.

Tainted Process

Rootkit Payload

Real Program

C

)

\

N\

J

flibdvm.so _|_) DvmGlobals
)m loadedClasses :

C
C

Having Fun!

Replace Class

Access Dalvik VM
State Directly

)
) /

.

HashTable

C
C

)
)

W

Injecting Hooks: Class Replacement/Swapping

Swap

WebView

FakeWebView

fstruct HashTable

before replacement

after replacement

Easy Implementation Plan: Swap two Classes
— e.g. WebView < FakeWebView
— Target = gDvm->loadedClasses
— Replacing classes must have exactly same methods

-
.

J

K,: WebView

K,: FakeWebView

)
_/

v

-
struct HashTable

f
\.

J

K,: FakeWebView

K,: WebView

)
_/

Injecting Hooks: Complete!

Gaining root Having Fun!

Taint Zygote Modify Dalvik State Replace Class

e st e . b Taint Zygote to Access Dalvik VM
[1
\ Tainted Zygote make tainted processes State Directly
s x \ r N\ , \ Replace class with
Tainted Process libdvm.so I_)‘ DvmGlobals HashTable rootkit’s one
Rootkit Payload)m loadedClasses Fake Class]
Real Program :) ()

\ J _ J

Real Class

FFR

Conclusion

e By tainting Zygote,
we can hook many of activities including method calls

— Rootkit Payload can be implemented in Pure Java

e Most of implementation are not so difficult

— Be aware of these kind of attacks

FFR

On-memory modification gives attackers ultimate flexibility.

DEMO

FFR

Protecting system is not so easy.

BOTTOM LINE

FFR

This is not...

e This Android “weakness” is not a vulnerability alone

e This malware is not a really advanced rootkit
— Easy to detect, Easy to defeat

e Butit’s not the point.

So, what was wrong?
e Protection: LSM...

— Need to know Android Internals

e Difference: Security Requirements
— Some Japanese smartphones had higher security requirements

— Different than Google expects

FFR
N\

Android: Open source, Closed platform

e Low Open Governance Index(!)
— Not everything is shared

e Vendor have to implement its own LSM and/or protection
— Compatibility Issues
— e.g. Deckard / Miyabi LSM prohibits all native debugging

e (Can Google or associations provide additional information
to implement proper LSM?

— To Defeat Compatibility Issues
— To Make implementing Additional Security Easier

(1) http://www.visionmobile.com/research.php#OGl

FFR
N\

Suggestions / Conclusions

e Suggestion: Make policy guidelines to protect Android devices

e Suggestion: Understand what’s happening inside the Android system

e |If the attacker can gain root privileges, the attacker can inject
rootkit hooks and monitor App activities

e This is easy to protect, but it implies many of other possibilities
— Advanced Android malware?

e Share the knowledge to protect Android devices!

Thank You!

\

Fourteenforty Research Institute, Inc.
http://www.fourteenforty.jp

