

Fourteenforty Research Institute, Inc.

• Gaining Administrative Privileges in Android OS
– Normally, root cannot be used by Apps
– Gaining root Privilege using...

• Local Exploits (dangerous)
• Fake Firmware Updates (relatively safe)

• What for?
– Customization, Overclocking
– Malicious Use (e.g. DroidDream)

• root in Android platform works differently
– Permission Checks
– Software-based UID/PID checks

2

Introduction: rooting Android

Fourteenforty Research Institute, Inc.

• Vendors and Careers want to:
– Protect Users
– Protect Career-specific / Vendor-specific Services
– Ensure Smartphones are not Altered and “Radio Legal”
– Protect their Business Model

• Answer: “Protect Smartphones”
– Prevent Firmware Modification
– Patch Framework and Kernel in order to Secure the device

3

Introduction: Japanese smartphones

Fourteenforty Research Institute, Inc.

• rooting and Android Security
– Android Internals and Security Model
– Bypassing Security and Gaining Privileges

• Vendor-Specific Protection
– Kernel-based Mechanism

• Yet Another Android Rootkit
– User-Mode Rootkit Bypassing Vendor-Specific Protections
– Hook User Applications

• So what was wrong?
– Open source, Closed platform

4

Agenda

Fourteenforty Research Institute, Inc.

ROOTING AND ANDROID SECURITY
rooting Android is not the end of the story.

5

Fourteenforty Research Institute, Inc.

• Five known root exploits affecting unmodified version of Android
– CVE-2009-1185 (exploid)
– [no CVE number] (rage against the cage)
– CVE-2011-1149 (psneuter)
– CVE-2011-1823 (GingerBreak)
– CVE-2011-3874 (zergRush)

• More of that: Chip/Vendor-specific Vulnerabilities

6

rooting is Sometimes Easy

Fourteenforty Research Institute, Inc.

• Logic Errors in suid programs
– Android Tablet [xxx]: OS command injection

rooting : Vulnerabilities (1)

7

The attacker can invoke arbitrary command in root privileges.

[REDACTED]

Fourteenforty Research Institute, Inc.

• Improper User-supplied buffer access
– Android smartphone [xxx]: Sensor Device Driver

rooting : Vulnerabilities (2)

8

The attacker write [REDACTED] to arbitrary user memory, bypassing copy-on-write.
Modifying setuid function (which affects all processes) can generate root-privilege processes.

[REDACTED]

Fourteenforty Research Institute, Inc.

• Gaining Privileges in Android system
– root user in Android system is slightly different
– The attacker want to take over the whole system

• Vendor-Specific Protection
– DroidDream won’t work properly on some Japanese Android phones
– /system may be Read-Only

• Is it possible to take over the system in protected smartphones?

9

rooting isn’t the end

Fourteenforty Research Institute, Inc.

• Android Permission and Protection
 Grant by Package Information (Permission Information)
 Restrict by Package Location (System or User)
 Restrict by Package Signature
 Grant by UID/PID (Backdoor?)

• Priorities of Activity (User-Interface Element)
 Grant by Package Information (Intent Filters)
 Restrict by Package Location (System Only)

• Legacy Linux Security Model
– Grant/Restrict: UID/GID/PID...

15

Android Security: Model

Fourteenforty Research Institute, Inc.

• Write System Partition
– Overwrite Framework, Applications

• Use chroot
– Make fake root and make system partition virtually

• Use ptrace
– Inject Malicious Hooks

• root can spoil Android security mechanism.
– Or is it?

22

Breaking Security: root can simply...

Fourteenforty Research Institute, Inc.

VENDOR-SPECIFIC PROTECTION
AOSP is not the everything.

23

Fourteenforty Research Institute, Inc.

• Some Android devices have Additional Security Feature
– Restrict root privileges to prevent devices to be overwritten

• Modification to the Kernel / Board
– NAND Lock
– Secure [Authenticated] Boot
– Integrity Checking
– Linux Security Modules (LSM)

24

Vendor-Specific Protection

Fourteenforty Research Institute, Inc.

• Reject all WRITE requests to important regions
– Boot Loader
– System Partition
– Recovery Partition

• Implemented as a NAND driver / LSM feature

• pros. Strong
– Prohibits ALL illegal writes in kernel mode

• cons. Does not Protect Memory
– Does not protect mount points as well
– Still can use ptrace / chroot / pivot_root

25

Vendor-Specific: NAND Lock

Fourteenforty Research Institute, Inc.

• Prevent Unsigned Boot Loader / Kernel to be Executed
– Hardware Implementation:

• e.g. nVidia Tegra
– Software (Boot Loader) Implementation:

• e.g. HTC Vision (Qualcomm’s Implementation)

• pros. Hard to Defeat
– Haven’t defeated directly

• cons. Only Protects Boot Loader / Kernel
– Does not Protect On-Memory Boot Loader / Kernel
– Most implementations does not Protect System Partition

26

Vendor-Specific: Secure Boot

Fourteenforty Research Institute, Inc.

• Verify loaded packages / programs are legitimate
– Restrict some features if untrusted packages / programs are loaded

• Sharp Corp. : Sphinx (Digest Manager)
– Protected Storage in Kernel Mode
– Digest Verifier in User-mode (dgstmgrd)

• Exports Content Provider

• pros. Ability to use Digital Signatures
• cons. Easy to avoid if processes can be compromised

– e.g. ptrace

27

Vendor-Specific: Integrity Verification

Fourteenforty Research Institute, Inc.

• Security Framework in Linux Kernel
– Used by SELinux (for example)

• LSM to Protect Android System

• Sharp Corp. : Deckard LSM / Miyabi LSM
– Protect Mount Point (/system)
– Prohibit ptrace
– Prohibit chroot, pivot_root...

• Fujitsu Toshiba Mobile Communications : fjsec
– Protect Mount Point (/system) and the FeliCa [subset of NFC] device
– Prohibit pivot_root
– Path-based / Policy-based Restrictions

• Kyocera Corp. : KCLSM

28

Vendor-Specific: Linux Security Modules (1)

Fourteenforty Research Institute, Inc.

• LSM (and NAND lock) Stops DroidDream
– DroidDream tries to remount /system read-write

but it is prohibited by the LSM

• pros. Mandatory and Strong
– Difficult to Defeat
– Capable to Hook System Calls

• cons. Difficult to Protect “Everything”
– ...unless you know all about Android Internals
– That could lead to LSM bypassing

• Some holes were fixed though...

29

Vendor-Specific: Linux Security Modules (2)

Fourteenforty Research Institute, Inc.

• Restrictions
– No Kernel-Mode
– No /proc/*/mem, /dev/*mem
– No ptrace
– No chroot, pivot_root
– No writes to system partitions (/system)

• But Assume if the attacker can gain root Privileges
– Possibility to take over whole system

• User-Mode Rootkit

30

Bypassing All Protections

Fourteenforty Research Institute, Inc.

YET ANOTHER ANDROID ROOTKIT
/protecting/system/is/not/enough/

31

Fourteenforty Research Institute, Inc.

• Facts:
– All normal Android Apps are forked from Zygote Daemon
– Zygote Daemon forks child on request through UNIX-domain socket

• Two plans:
– Plan A: Hooking UNIX-domain Socket

• Stealthy
– Plan B: Generating two Zygote processes

• Easy to implement
• Flexible

33

Injecting Hooks: Taint Zygote (1)

Fourteenforty Research Institute, Inc.

• Assume: The attacker can execute malicious Java class
• Modify Dalvik VM state to inject hooks

– Read/Write arbitrary memory required
– sun.misc.Unsafe class

• Dalvik VM (libdvm.so) exports many symbols
– Including its Global State (gDvm)
– Modifying gDvm enables hook injection

39

Injecting Hooks: Modify Dalvik State
libdvm.so

.

...

struct DvmGlobals

gDvm loadedClasses

...

struct HashTable

info: Class A

info: Class B

Dalvik VM Global State All Classes Information

Modify Class Metadata
to Inject Hooks

Fourteenforty Research Institute, Inc.

• Easy Implementation Plan: Swap two Classes
– e.g. WebView FakeWebView
– Target = gDvm->loadedClasses
– Replacing classes must have exactly same methods

41

Injecting Hooks: Class Replacement/Swapping

struct HashTable

K1: WebView

K2: FakeWebView

... in
he
rit

Sw
ap

struct HashTable

...

K1: FakeWebView

K2: WebView

before replacement

after replacement

WebView

FakeWebView

Fourteenforty Research Institute, Inc.

• By tainting Zygote,
we can hook many of activities including method calls
– Rootkit Payload can be implemented in Pure Java

• Most of implementation are not so difficult
– Be aware of these kind of attacks

43

Conclusion

Fourteenforty Research Institute, Inc.

DEMO
On-memory modification gives attackers ultimate flexibility.

44

Fourteenforty Research Institute, Inc.

BOTTOM LINE
Protecting system is not so easy.

45

Fourteenforty Research Institute, Inc.

• This Android “weakness” is not a vulnerability alone
• This malware is not a really advanced rootkit

– Easy to detect, Easy to defeat

• But it’s not the point.

46

This is not...

Fourteenforty Research Institute, Inc.

• Protection: LSM...
– Need to know Android Internals

• Difference: Security Requirements
– Some Japanese smartphones had higher security requirements
– Different than Google expects

47

So, what was wrong?

Fourteenforty Research Institute, Inc.

• Low Open Governance Index(1)

– Not everything is shared

• Vendor have to implement its own LSM and/or protection
– Compatibility Issues
– e.g. Deckard / Miyabi LSM prohibits all native debugging

• Can Google or associations provide additional information
to implement proper LSM?
– To Defeat Compatibility Issues
– To Make implementing Additional Security Easier

48

Android: Open source, Closed platform

(1) http://www.visionmobile.com/research.php#OGI

Fourteenforty Research Institute, Inc.

• Suggestion: Make policy guidelines to protect Android devices
• Suggestion: Understand what’s happening inside the Android system

• If the attacker can gain root privileges, the attacker can inject
rootkit hooks and monitor App activities

• This is easy to protect, but it implies many of other possibilities
– Advanced Android malware?

• Share the knowledge to protect Android devices!

49

Suggestions / Conclusions

