XUnprotect: Reverse
Engineering macOS XProtect
Remediator

Koh M. Nakagawa (@tsunekOh)
FFRI Security, Inc.

FFRI
X

NSUserFullName()

« Koh M. Nakagawa (@tsunekOh)
» Security researcher at FFRI Security, Inc.

* Mainly focusing on Apple product security

White Paper Is Live

» Contains all the technical details (71 pages)

» Available at http://i.blackhat.com/BH-USA-
25/Presentations/USA-25-Koh-XUnprotect-Reverse-
Engineering-macOS-XProtect-Remediator-wp.pdf

* Thank you for Howard Oakley and Phil Stokes

http://i.blackhat.com/BH-USA-25/Presentations/USA-25-Koh-XUnprotect-Reverse-Engineering-macOS-XProtect-Remediator-wp.pdf
http://i.blackhat.com/BH-USA-25/Presentations/USA-25-Koh-XUnprotect-Reverse-Engineering-macOS-XProtect-Remediator-wp.pdf
http://i.blackhat.com/BH-USA-25/Presentations/USA-25-Koh-XUnprotect-Reverse-Engineering-macOS-XProtect-Remediator-wp.pdf
http://i.blackhat.com/BH-USA-25/Presentations/USA-25-Koh-XUnprotect-Reverse-Engineering-macOS-XProtect-Remediator-wp.pdf
http://i.blackhat.com/BH-USA-25/Presentations/USA-25-Koh-XUnprotect-Reverse-Engineering-macOS-XProtect-Remediator-wp.pdf
http://i.blackhat.com/BH-USA-25/Presentations/USA-25-Koh-XUnprotect-Reverse-Engineering-macOS-XProtect-Remediator-wp.pdf
http://i.blackhat.com/BH-USA-25/Presentations/USA-25-Koh-XUnprotect-Reverse-Engineering-macOS-XProtect-Remediator-wp.pdf
http://i.blackhat.com/BH-USA-25/Presentations/USA-25-Koh-XUnprotect-Reverse-Engineering-macOS-XProtect-Remediator-wp.pdf
http://i.blackhat.com/BH-USA-25/Presentations/USA-25-Koh-XUnprotect-Reverse-Engineering-macOS-XProtect-Remediator-wp.pdf
http://i.blackhat.com/BH-USA-25/Presentations/USA-25-Koh-XUnprotect-Reverse-Engineering-macOS-XProtect-Remediator-wp.pdf
http://i.blackhat.com/BH-USA-25/Presentations/USA-25-Koh-XUnprotect-Reverse-Engineering-macOS-XProtect-Remediator-wp.pdf
http://i.blackhat.com/BH-USA-25/Presentations/USA-25-Koh-XUnprotect-Reverse-Engineering-macOS-XProtect-Remediator-wp.pdf
http://i.blackhat.com/BH-USA-25/Presentations/USA-25-Koh-XUnprotect-Reverse-Engineering-macOS-XProtect-Remediator-wp.pdf
http://i.blackhat.com/BH-USA-25/Presentations/USA-25-Koh-XUnprotect-Reverse-Engineering-macOS-XProtect-Remediator-wp.pdf
http://i.blackhat.com/BH-USA-25/Presentations/USA-25-Koh-XUnprotect-Reverse-Engineering-macOS-XProtect-Remediator-wp.pdf
http://i.blackhat.com/BH-USA-25/Presentations/USA-25-Koh-XUnprotect-Reverse-Engineering-macOS-XProtect-Remediator-wp.pdf
http://i.blackhat.com/BH-USA-25/Presentations/USA-25-Koh-XUnprotect-Reverse-Engineering-macOS-XProtect-Remediator-wp.pdf
http://i.blackhat.com/BH-USA-25/Presentations/USA-25-Koh-XUnprotect-Reverse-Engineering-macOS-XProtect-Remediator-wp.pdf
http://i.blackhat.com/BH-USA-25/Presentations/USA-25-Koh-XUnprotect-Reverse-Engineering-macOS-XProtect-Remediator-wp.pdf
http://i.blackhat.com/BH-USA-25/Presentations/USA-25-Koh-XUnprotect-Reverse-Engineering-macOS-XProtect-Remediator-wp.pdf
http://i.blackhat.com/BH-USA-25/Presentations/USA-25-Koh-XUnprotect-Reverse-Engineering-macOS-XProtect-Remediator-wp.pdf
http://i.blackhat.com/BH-USA-25/Presentations/USA-25-Koh-XUnprotect-Reverse-Engineering-macOS-XProtect-Remediator-wp.pdf
http://i.blackhat.com/BH-USA-25/Presentations/USA-25-Koh-XUnprotect-Reverse-Engineering-macOS-XProtect-Remediator-wp.pdf

About This Presentation

* This presentation covers:
o Technical deep dive into XProtect Remediator (XPR)

* This presentation does not cover:

o Evaluation of XPR
o Traditional XProtect

» For this topic, see Stuart Ashenbrenner's excellent talk
= https://youtu.be/43BIK-e7FBE

https://youtu.be/43BIK-e7FBE?si=KKq7DuFoLOhwUv_h
https://youtu.be/43BIK-e7FBE?si=KKq7DuFoLOhwUv_h
https://youtu.be/43BIK-e7FBE?si=KKq7DuFoLOhwUv_h
https://youtu.be/43BIK-e7FBE?si=KKq7DuFoLOhwUv_h
https://youtu.be/43BIK-e7FBE?si=KKq7DuFoLOhwUv_h
https://youtu.be/43BIK-e7FBE?si=KKq7DuFoLOhwUv_h

Outline

. Introduction
Tooling

RE results

N

Conclusion

What Is XPR?

Three layers of defense

Malware defenses are structured in three layers:
1. Prevent launch or execution of malware: App Store, or Gatekeeper combined with Notarization

2. Block malware from running on customer systems: Gatekeeper, Notarization, and XProtect
3. Remediate malware that has executed: XProtect[Remediator]

XProtect[Remediator] acts to remediate malware that has managed to successfully execute.

- “Apple Platform Security” by Apple

https://help.apple.com/pdf/security/en US/apple-platform-se curity-guide.pdf

https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf

What Is XPR?

* Introduced in macOS Monterey as a replacement for the MRT
 Built-in mechanisms and updated once or twice per month

« Contains 20+ scanners, each targeting a specific malware family

hoakley [August 30, 2022 [Macs, Technology

Apple overhauls built-in Mac anti- macOS now scans for malware
malware you probably don't know about whenever it gets a chance

New version of XProtect is "as active as many commercial anti-malware products."
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/

XProtectRemediatorAdload
XProtectRemediatorBadGacha
XProtectRemediatorBlueTop

https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-ma Iware-scanning-features-in-newer-macos -versions/

XProtectRemediatorBundlore
XProtectRemediatorCardboardCutout
XProtectRemediatorColdSnap

https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://eclecticlight.co/2022/08/30/macos-now-scans-for-malware-whenever-it-gets-a-chance/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/
https://arstechnica.com/gadgets/2022/08/apple-quietly-revamps-malware-scanning-features-in-newer-macos-versions/

Why Is Remediation Needed?

« Some malware bypasses the first and second layers of defense

* Apple needs a way to remove such malware

THE INFECTED 3CX INSTALLER
supply-chain attack #2

attack #2

Our focus:

@ (macOS) installer

https://www.kandji.io/blog/amos-macos-stealer-analysis

https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=28
https://www.kandji.io/blog/amos-macos-stealer-analysis
https://www.kandji.io/blog/amos-macos-stealer-analysis
https://www.kandji.io/blog/amos-macos-stealer-analysis
https://www.kandji.io/blog/amos-macos-stealer-analysis
https://www.kandji.io/blog/amos-macos-stealer-analysis
https://www.kandji.io/blog/amos-macos-stealer-analysis
https://www.kandji.io/blog/amos-macos-stealer-analysis

Research Motivation

* From defensive security perspective
o Several malware families targeted by XPR remain unknown

o XPR's remediation logic is unclear

6 Phil Stokes — &— 6 CardboardCutout

A few more of the missing XProtectRemediator names: i g/leYeTo}V = /Te] o114
ColdSnap = POOLRAT (cf XProtect MACOS c723519); .
GreenAcre = OSX.Gimmick RoachFlight

SheepSwap = Adload

SnowBeagle = Lazarus TraderTraitor - “Why XProtect Remediator scans now take longer” by Howard Oakley
RedPine = TriangleDB ()
WaterNet = Proxit-Go

https://eclecticlight.co/2025/01/03/why-xprotect-remediator-scans-now-take-longer/

Still have a few more to work through.

https://eclecticlight.co/2025/01/03/why-xprotect-remediator-scans-now-take-longer/
https://eclecticlight.co/2025/01/03/why-xprotect-remediator-scans-now-take-longer/
https://eclecticlight.co/2025/01/03/why-xprotect-remediator-scans-now-take-longer/
https://eclecticlight.co/2025/01/03/why-xprotect-remediator-scans-now-take-longer/
https://eclecticlight.co/2025/01/03/why-xprotect-remediator-scans-now-take-longer/
https://eclecticlight.co/2025/01/03/why-xprotect-remediator-scans-now-take-longer/
https://eclecticlight.co/2025/01/03/why-xprotect-remediator-scans-now-take-longer/
https://eclecticlight.co/2025/01/03/why-xprotect-remediator-scans-now-take-longer/
https://eclecticlight.co/2025/01/03/why-xprotect-remediator-scans-now-take-longer/
https://eclecticlight.co/2025/01/03/why-xprotect-remediator-scans-now-take-longer/
https://eclecticlight.co/2025/01/03/why-xprotect-remediator-scans-now-take-longer/
https://eclecticlight.co/2025/01/03/why-xprotect-remediator-scans-now-take-longer/
https://eclecticlight.co/2025/01/03/why-xprotect-remediator-scans-now-take-longer/

Research Targets

* /Library/Apple/System/Library/CoreServices/XProtect.app
o Contents/MacOS/XProtectRemediator*
o Contents/MacOS/XProtect

o Contents/XPCServices/XProtectPluginService.xpc

« XPR-related binaries are written in Swift

sh-3.2% rabin2 -S /Library/Apple/System/Library/CoreServices/XProtect.app/Contents/MacOS/XProtectRemediatorBlueTop| grep swift
5 0x000925cc Px4 Ox10800925cc Ox4 -r-x REGULAR 5. _TEXT.__swift5_entry

8 OxP0PPabPaa 0x1e?7 Ox1000PabPaa 0x1e97 -r—-x REGULAR 8. _TEXT.__swift5_typeref

10 0©x000a9158 0x30c 0x1000a9158 0x30c -r—-x REGULAR 10.__TEXT.__swift5_capture SW|ft'SpeC|f|C

11 0x000a9470 0x1757 0x1000a9470 Ox1757 -r-x REGULAR 11.__TEXT.__swiftb_reflstr
12 0©x000aabc8 0x350 0x1000aabc8 0x350 -r-x REGULAR 12.__TEXT.__swift5_assocty Sect|ons

Outline

1. Introduction
. Tooling

RE results

AW N

Conclusion

Static Analysis
 Binary Ninja
 Stripped Swift Mach-O binaries

« Symbols are stripped, but some symbols can be recovered
o Many shared functions between XPR scanners and libXProtectPayloads.dylib
o Symbols of libXProtectPayloads.dylib can be imported into XPR scanners

Overview

Functions 74.0% Similarity 0.87
3
s -
0.1% - [1z7s s
B 25.9% S 3,000
T
5
T 2,000
-
=
£ 1,000 |
3650 e =
a0 0 L A e s R s S S S >

S v W " Ll “ o o, % il S
o o = o o o o o o o "

Challenges in RE of Stripped Swift Binaries

« Some key missing symbols of stripped Swift binaries
o Type metadata accessor

o Type metadata
o Protocol Witness Table (PWT)

* Reversing Swift binaries without this information is quite difficult...

10009a30f * rax_3 = _swift_initStackObject(sub_10009b3b0(&data_100106998), &var_118)
10009a31e *(rax_3 + 0x10 data_1000c65e0

100092329 *(rax_3 + 0x38 &data_1000f1b606

10009a334 *(rax_3 + 0x40 &data_1000f13f8

10009a33c *(rax_3 + 0x20 rax & 1

L RERED *(rax_3 + 0x28 rdx

10009a34b *(rax_3 + 0x68) = &data_1000f1b78 Symbols of type metadata

)
)
)
)
)
)
100092356 *(rax_3 9"68; &data_100011408 are missing...
)
)
)
)

10009a35e *(rax_3 + 0x48 rax_1 & 1
100092362 *(rax_3 + 0x50 rdx_1

10009a36d 0x88 &data_1000f19206
10009a37b 0x90) = &data_1600f13b8
10009a393 _4 = _swift_allocObject(&data_1000f2e06, 0x38, 7)
100092398 *(rax_3 + 0x70) = rax_4

+ + + + + + + + + o+

Swift Metadata

 Swift binaries contain extensive metadata for reflection

* This metadata includes type metadata accessor, type metadata, PWT
o __ TEXT. swift5 protos, TEXT. swift5 types, and more
o See “DisARMing Code” by Jonathan Levin (https://newdebuggingbook.com)

» With ipsw swift-dump, this metadata can be extracted as Swift code
o https://github.com/blacktop/ipsw

o But no tools to import this metadata into a disassembler...

https://newdebuggingbook.com/
https://github.com/blacktop/ipsw
https://github.com/blacktop/ipsw

binja-swift-analyzer

« Custom Swift analysis plugin for Binary Ninja

o Based on ipsw swift-dump
o Available on GitHub (https://github.com/FFRI/binja-swift-analyzer)

» Key features
o Type metadata parsing
o PWT analysis
o Class method identification
o Swift string analysis

o Visual representation of protocol conformance and class inheritance

https://github.com/FFRI/binja-swift-analyzer
https://github.com/FFRI/binja-swift-analyzer
https://github.com/FFRI/binja-swift-analyzer
https://github.com/FFRI/binja-swift-analyzer
https://github.com/FFRI/binja-swift-analyzer

Type Metadata

void* rax_3 =

*(rax_3
*(rax_3
*(rax_3
(rax_3
(rax_3
(rax_3
(rax_3
(rax_3
(rax_3
(rax_3
*(rax_3

*

void* rax_3 =

*(rax_3
*(rax_3
*(rax_3
rax_3
rax_3
rax_3
rax_3
rax_3
rax_3
rax_3
*(rax_3

*

(
(
(
(
(
*(
(
(
(
(

+

+ + + + + + + + + +

L

+ + + 4+ + 4+ + + + +

0x10)
8x38)
9x40)
0x20)
0x28)
0x60)
8x68)
Bx48)
Bx50)
0x88)
0x90)

Identification

swift_initStackObject(sub_10009b3b0(&data_100106998), &var_118)
= data_1000c65e0
&data_1000f1b0e6
&data_1000f13f8
rax & 1
rdx
&data_1000f1b78
&data_1000f1408
rax_1 & 1
rdx_1
&data_1000f1920
&data_1000f13b8

éwift_initStackbbject(sub_19989b3b8(&data_198196998), &var_118)

data_100808c65e€0
&type metadata for RemediationBuilder.FileMacho

= &pwt of RemediationBuilde...ationBuilder.FileConditionConvertible

rax & 1

rdx

&type metadata for RemediationBuilder.FileNotarised

&pwt of RemediationBuilde...ationBuilder.FileConditionConvertible
rax_1 & 1

= rdx_1

&type metadata for RemediationBuilder.FileYara

= &pwt of RemediationBuilde...ationBuilder.FileConditionConvertible

Dynamic Analysis — LLDB Scripting Bridge

* Branch tracing script (https://github.com/kohnakagawa/LLDB)

o Swift binaries contain many indirect branches

o Manually identifying branch targets is time-consuming

o This script automatically captures target addresses

o Trace data is exported as JSON for import via binja-missinglink plugin

o https://github.com/FFRI/binja-missinglink

https://github.com/kohnakagawa/LLDB
https://github.com/FFRI/binja-missinglink
https://github.com/FFRI/binja-missinglink
https://github.com/FFRI/binja-missinglink
https://github.com/FFRI/binja-missinglink

Branch Tracing & Imported into Binja

* const

188899283
18889987
188899291
18889929
18889%ebf
18889%:db
18889%:db
18889%:db
1888998
18889918
18889%efe
188899787
188899119
188899122
188899131

sub_108889%&18(* argl)

* r14 = *{argl + 8x18)
r15 = *{argl + 8x28)
sub_186889bh738(aral, ri4)
(*(r15 + 8x28))(r14, r15)
var_pa_1 = §
5
* var_98
sub_18889b7306(&s, var_98)
var_88
(*(var_88 + 8x28))(var_98, var_B88)
URL .deletinglLastPathComponent() ()
rax 15 = *(rax_1 + 8)
rax_15(rsp, rax)
SuUD_100090090 | &5)
(*(rax_1 + 8x28))(rsp_2, rsp_1, rax)

* const

18889983
18889987
18889991
1868899229
188899229
108839040
188899ea9
18889%ebf
18889%adb
18889%edb
18889%adb
18889918
18889918
18889%fe
1eeassfta7
188899119
188899119
Tooa99T 1Y
188899119
18889922
188899731
188899131
188899731
188899731
188899131

sub_188899:18(* argl)

* r14 = *(argl + 8x18)
r15 = *(argl + 8x28)
cub g Hﬂﬁﬂh?iﬂ{arg1 . r1dj

Bx188837e28 Bx1688ef348

(*(r15 + 8x28))(r14, r15)

B T
VEl 1T = &

5
* var_98
sub_1880890730(&s, var_98)
var_88a
(*(var_88 + 8x28))(var_98, var_B88)
URL .deletingLastPathCompanent()()
rax 15 = *{rax 1 + 8)

rax_15(rsp, rax)
sub_108089bb98(&s)

(*(rax_1 + 8x28))(rsp_2, rsp_1, rax)

8x188847b50

Outline

1. Introduction
2. Tooling
3. RE results

1. Overview
2. Initialization
3. RemediationBuilder

4. Remediation Logic

4. Conclusion

Flow of “Remediation”

daemon.scan.startup.plist DAS-CTS
daemon.scan.plist

agent.scan.startup.plist
agent.scan.plist DAS-CTS

Swift Mach-o e XPR scanners
Initialization

Contents/MacOS/XProtect XProtectPluginService.xpc

GCD & NSTask

Adload BlueTop WaterNet

Remediation/Detection BadGacha

Collect remediated
threat info

S BB %

plist 3d stage payload 2" stage payload evil.app

Send remediated
threat info

Outline

1. Introduction
2. Tooling
3. RE results

1. Overview

2. Initialization

3. RemediationBuilder

4. Remediation Logic

4. Conclusion

daemon.scan.startup.plist
daemon.scan.plist

DAS-CTS

Contents/MacOS/XProtect XProtectPluginService.xpc

agent.scan.startup.plist
agent.scan.plist DAS-CTS

GCD & NSTask

Swift Mach-O IS XPR scanners

Initialization
BlueTop WaterNet

Remediation/Detection BadGacha

Collect remediated
threat info

_______________________________________ [- [

l Remediates threats

Send remediated

threat info % -' -' I
— B

plist 3d stage payload 279 stage payload evil.app

These files have the same
provenance attribute

mod init func 0

* mod_init_func_0 (executed before program entry point)
o Sensitive strings (YARA, file paths, etc.) for remediation are encrypted with XOR cipher

o These strings are decrypted before entry point

int128_t* mod_init_func_0()

10000498 if (data_1000d2450 == @ && ___cxa_guard_acquire(&data_1000d2450) != @)

100004 faf
100004 fc4
100004 fc4
100004 fc4
100004fe7
1000041 f3
1000041 f3
100004eab
100004ea7/
100004ea7/
100004ecc
100004ebb
100004ebe
100004ec2
100004ec2
100004ece
100004ece
100004edc

data_1000d2449 = 1
__builtin_memcpy(dest: &data_1000d2430,
src: "\x5b\x63\x44\x67\x5b\x5f\x5e\x5F\x77\x47\x0c\x66\x41\x1b\x61
n: 0x19)
___cxa_atexit(f: f_100004ddc, p: &data_1000d2430, d: &__macho_header)
___cxa_guard_release(&data_1000d2450)

if (data_1000d2449 != 09)
int128_t* rax_3 &data_1000d2430

for (int64_t i_1 = 0@; i_1 != @xc8;)
*rax_3 "= (8x303a31323a333400 u>> (i_1.b & 0x38)).b

i_1 += 8
rax_3 += 1

Simple XOR cipher

data_1000d2449 = @

data_1000d1f88 = &data_1000d2430

Decrypting XPR Sensitive Strings

 Alden’s nice Binja script can decrypt these encrypted strings

o However, some strings cannot be decrypted

The output isn’t perfect, there is some occasional junk.

- “The Secrets of XProtectRemediator” by Alden Schmidt

My custom LLDB SB script decrypt all these strings

o https://github.com/FFRI/binja-xpr-analyzer/tree/main/dump_secret_config

https://github.com/FFRI/binja-xpr-analyzer/tree/main/dump_secret_config
https://github.com/FFRI/binja-xpr-analyzer/tree/main/dump_secret_config
https://github.com/FFRI/binja-xpr-analyzer/tree/main/dump_secret_config
https://github.com/FFRI/binja-xpr-analyzer/tree/main/dump_secret_config
https://github.com/FFRI/binja-xpr-analyzer/tree/main/dump_secret_config
https://github.com/FFRI/binja-xpr-analyzer/tree/main/dump_secret_config

Decryption Results

® ® ® RoachFlight ®® e BadGacha ® @ ® RedPine

04e23817983f1c0e9290ce7f90e6c9e75bT45190 .background rule macos redpine implant {
99¢31f166d1f1654alb7dd1ab6bec3b935022a020 J -Packground.)S_redpine_imp
right-click strings:
right click $classA = "CRConfig"
000 i - i
Trovi option click $classD = "CRPwrInfo"

choose open) e
MACO0S . 0260dfd click open $classE = "CRGetFile

MACOS . f07788a press open $classF "CRXDump"
MACOS.ad27ff5 unidentified developer condition:

MACOS . 8ccf842 are you sure you want all of them

will always allow it

/Library/Preferences/com.common.plist :
run on this mac

/Library/Preferences/com.settings.plist
/etc/change_net_settings.sh
/etc/pf_proxy.conf ®®¢® RankStank
.preferences.plist
-net.preferences.plist) _

. strings:
/L}brary/Preferences/ $injected_func = "_run_avcodec"
/Library/LaunchDaemons/ $xor_decrypt = { 80 b4 04 ?2? 2? 00 00 7a }
/Library/ $stringA = "%s/.main_storage"
/etc/st-up.sh $stringB = ".session-lock"
/etc/run_upd.sh $stringC = "%s/UpdateAgent"
.service.plist condition:
/etc/ 2 of them

rule macos_rankstank

Outline

daemon.scan.startup.plist
. daemon.scan.plist
1 . I n t ro d u Ct Ion Contents/MacOS/XProtect XProtectPluginService.xpc

agent.scan.startup.plist
agent.scan.plist DAS-CTS

DAS-CTS

GCD & NSTask

2. Tooling

Swift Mach-O IS XPR scanners

3. RE I'eSU|tS |nitiali23ti§n BlueTop WaterNet

1 - Ove rview Remediation/Detection
BadGacha

2. Initialization

Collect remediated Remediates threats
threat info

3. RemediationBuilder sf6 et b

Send remediated
% BB %

threat info
plist 3d stage payload 279 stage payload evil.app

4. Remediation Logic

These files have the same

4) CO n CI u S| On provenance attribute < - -

How to Describe Remediation Logic

» Consider remediation under the following conditions:
* Files under ~/Library/Application Support (search depth up to 5)
* The file size is 2 MiB or less
* The file format is Mach-O
* Not notarized
* Matches the YARA rule

 When running as root, add /Library/Application Support to the search targets and
match with a different YARA

Naive Implementation

let yaraMatcher = createYaraMatcher("<some rule>")
for file in enumerateFiles("~/Library/Application Support", 5) {
if file.size <= * * {
if file.isMacho() {
1f !'file.isNotarized() {
if yaraMatcher.match(file) {
remediate(file)

by

let yaraMatcherRoot = createYaraMatcher("<some rule for root>")
if getuid() == 0 {

Issues When Implementing Remediation Logic

 Remediation logic is understandable, but...
» Readability and maintainability decrease as conditions increase

* How can we improve readability and maintainability?

Apple has achieved readability and maintainability

by using Swift result builders

What Are Result Builders?

 Swift result builders are a feature introduced in Swift 5.4
o For creating DSLs within Swift code

o Used in SwiftUl to describe Ul declaratively

» Useful for code that collects multiple elements to produce a single result

o E.g., generating structural data (e.g., HTML, JSON)
o In XPR, combining remediation conditions to produce the final remediation decision

https://qithub.com/swiftlang/swift-evolution/blob/main/proposals/0289-result-builders.md
https://developer.apple.com/videos/play/wwdc2021/10253/

https://github.com/swiftlang/swift-evolution/blob/main/proposals/0289-result-builders.md
https://github.com/swiftlang/swift-evolution/blob/main/proposals/0289-result-builders.md
https://github.com/swiftlang/swift-evolution/blob/main/proposals/0289-result-builders.md
https://github.com/swiftlang/swift-evolution/blob/main/proposals/0289-result-builders.md
https://github.com/swiftlang/swift-evolution/blob/main/proposals/0289-result-builders.md
https://github.com/swiftlang/swift-evolution/blob/main/proposals/0289-result-builders.md
https://github.com/swiftlang/swift-evolution/blob/main/proposals/0289-result-builders.md
https://developer.apple.com/jp/videos/play/wwdc2021/10253/

Power of Result Builders

let yaraMatcher = createYaraMatcher("<some rule>")
for file in enumerateFiles("~/Library/Application Support", 5) {
if file.size <= * * {
if file.isMacho() {
1f !'file.isNotarized() {
if yaraMatcher.match(file) {
remediate(file)

by

let yaraMatcherRoot = createYaraMatcher("<some rule for root>")
if getuid() == 0 {

Power of Result Builders

TestRemediator {

File(searchDir: "~/Library/Application Support", regexp: "
MaxFileSize(2 * *)
FileMacho()
FileNotarized()

FileYara(YaraMatcher("<some rule>"))

.*", searchDepth: 5) {

}

if isRoot {

TestRemediator {

File(searchDir: "~/Library/Application Support", regexp: ".*"4 searchDepth: 5) {
MaxFileSize(2 * *)

FileMacho()

FileNotarized()
FileYara(YaraMatcher('"<some rule>"))

}

if isRoot {

RemediationBuilder DSL

Describes remediation conditions for launchd services
enum RemediationBuilder.ServiceRemediationBuilder {}

For files
enum RemediationBuilder.FileRemediationBuilder {}

For processes
enum RemediationBuilder.ProcessRemediationBuilder {}

For Safari App Extensions
enum RemediationBuilder.SafariAppExtensionRemediationBuilder {}

Combining 5 types of remediations (Service, File, Process, SafariAppExtension, Proxy)
enum RemediationBuilder.RemediationArrayBuilder {}

Specification of RemediationBuilder DSL

https://github.com/FFRI/RemediationBuilderDSLSpec

https://ffri.github.io/RemediationBuilderD S| Spec/documentation/remediationbuilder

0 Documentation Language: Swift

RemediationBuilder

Framework
[Basic Concepts

™ Service Conditions RemediationBuilder

[Process Conditions) .) .
A Domain Specific Language for declaratively describing malware

[File Conditions remediation (or detection) conditions and logic.

[Safari App Extension Conditions

Classes

> [c] XPLogger OV erview RemediationBuilder

Protocols Overview

N Condition RemediationBuilder provides a set of Domain Specific Languages that enable the declarative
description of malware remediation (or detection) conditions and logic. This framework is
> [p] FileCondition specifically designed for use within XProtect Remediator.

Topics

https://github.com/FFRI/RemediationBuilderDSLSpec
https://ffri.github.io/RemediationBuilderDSLSpec/documentation/remediationbuilder

EicarRemediator {
File(path: "/tmp/eicar") { FileRemediationBuilder DSL block

MinFi1leS1ze(68)
FileYara(YaraMatcher(eicarYara))

Outline

daemon.scan.startup.plist
daemon.scan.plist

1 . I N t ro d u Ct Ion Contents/MacOS/XProtect XProtectPluginService.xpc

agent.scan.startup.plist
agent.scan.plist DAS-CTS

DAS-CTS

GCD & NSTask

2. Tooling

Swift Mach-O) XPR scanners

Initializati
3. RE I'eSU|tS B I.on Adload BlueTop WaterNet

1 - Ove rview Remediation/Detection
BadGacha

2. Initialization

Collect remediated
threat info

_______________________________________ [- [

Remediates threats

3. RemediationBuilder

Send remediated

threat info % -' -' ik
— T %

plist 3d stage payload 279 stage payload evil.app

4. Remediation Logic

These files have the same

4) CO n CI u S| On provenance attribute < - -

RoachFlight Scanner

* Added in XPR version 96 on 27 April 2023

o Added at the same time as RankStank scanner

o RankStank scanner removes payloads used in the 3CX supply chain attack

* The decrypted strings are the two hash values

04e2381798311c0e9290ce/T90e6c9e/75b1T45190
99c31f1l66d1f1654alb/ddlabbec3b935022a020

let targetCDHashes = ["04e23817983f1c0e9290ce7f90e6c9e75bf45190",
"99c31f166d1f1654alb7dd1labbec3b935022a020"]

RoachFlightRemediator {
for cdHash in targetCDHashes {

Process {

}

What Are These Two CDHashes?

* 04e23817983f1c0e€9290ce7f90e6c9e75bf45190 is known
o CDHash of the 2"d stage payload in the 3CX supply chain attack
o Referred to as UpdateAgent
o Was analyzed by Patrick Wardle and presented at BHUSA 2023
e PatrickWard‘Ie o

Also from UpdateAgent's code signing information, its identifier:
"payload2-55554944839216049d683075bc3f5a8628778bb8"

Other Lazarus group (®&2) payloads are signed adhoc and use a similar

identifier scheme @

For example compare UpdateAgent & another &2 payload, AppleJuice.C

N

B 3CX Desktop App — <zsh — 116x23 B 3CX Deskiop App ~ -zsh — 116x23
ktop App % codesign ~-dvvv UpdateAgent ktop App % codesign -dvvv ~/Downloads/Applel

plication Support/3CX Desktop App/UpdateAgerAppleleus/C/unioncryptoupdater
?d683075bc3f5aB8628778bb8 21f5132ce8788c3febdfe7392

https://x.com/patrickwardle/status/1641690082854989827

https://x.com/patrickwardle/status/1641690082854989827

What Are These Two CDHashes?

* 99¢31f166d1f1654alb7dd1labbec3b935022a020 is unknown
o Could it potentially be UpdateAgent variant?

o Patrick Wardle suggested the possibility of other UpdateAgent samples

Why?
== =a few thoughts Vo still in informa.tion ga.thering stage
Transmit data to C&C Server o . .
...and then, ...nothing? (exits) leferent Vlctlms, @ The attaCk was detected
éj e b S oy get different payloads early (enough)
st ("https: a\l.wik -

Transmits data to C2,

UpdateAgent variant
and then, does nothing

performs more actions?
(known CDHash) (unknown CDHash)

https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46
https://speakerdeck.com/patrickwardle/mac-ing-sense-of-the-3cx-supply-chain-attack-analysis-of-the-macos-payloads?slide=46

BadGacha Scanner 00

.background
.background.
right-click
right click

 Added in XPR version 91 on 2 March 2023

* Decrypted strings appear unrelated to option click
remediation choose open
P click open
* What are these texts used for” ress open

unidentified developer

are you sure you want
will always allow 1t

run on this mac

 Hint: background image of AMOS DMG contains similar strings

8 dlesling

.background

.background.

right-click

right click LA
option click emmncuu “[Z oLk “OPeN"
choose open

click open & - ——
press open .-_
unidentified developer iaolng

are you sure you want

will always allow it

run on this mac

https://www.kandji.io/blog/amos-macos-stealer-analysis
https://www.kandji.io/blog/amos-macos-stealer-analysis
https://www.kandji.io/blog/amos-macos-stealer-analysis
https://www.kandji.io/blog/amos-macos-stealer-analysis
https://www.kandji.io/blog/amos-macos-stealer-analysis
https://www.kandji.io/blog/amos-macos-stealer-analysis
https://www.kandji.io/blog/amos-macos-stealer-analysis

OCR-based Gatekeeper Bypass Detection

« BadGacha scanner contains detection logic for Gatekeeper bypass
o Enumerates mounted DMG files
o Retrieves text strings in background images of DMGs using OCR
o Searches for Gatekeeper bypass-related strings

e If it finds such strings, it reports the DMG file information

o Only reporting is performed, without deleting or unmounting the DMG

Which Malware Family Does It Detect?

* Appears to be a generic detection scanner?

o It detects several different malware families

o Apple may have designed BadGacha scanner as a threat hunting scanner?

EM PI RE @ Secure File Transfer 1

Right Click File Right click

on the icon below.

< — Then Click Open

Click Ok/ Yes on any following

popups to securely open the > ‘
document! f'

% Chromelnstaller

https://9to5mac.com/2024/02/29/security-bite-self-destructing- https://www.crowdstrike.com/en-us/blog/how-crowdstrike-
macos-malware-strain-disguised-as-legitimate-mac-app/ uncovered-a-new-macos-browser-hijacking-campaign/

https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://9to5mac.com/2024/02/29/security-bite-self-destructing-macos-malware-strain-disguised-as-legitimate-mac-app/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/
https://www.crowdstrike.com/en-us/blog/how-crowdstrike-uncovered-a-new-macos-browser-hijacking-campaign/

RedPine Scanner

« Added in version 114 on October 12, 2023
o Later retired in 2024

» Decrypted strings are a YARA rule and four file paths
o The YARA rule detects the TriangleDB iOS implant

« Kaspersky noted the possibility of TriangleDB macOS implant
o RedPine appears to be TriangleDB macOS implant

While analyzing TriangleDB, we found that the class CRConfig (used to store the
implant’s configuration) has a method named populate WithFieldsMacOSOnly. ...
its existence means that macOS devices can also be targeted with a similar
Implant;

- “Dissecting TriangleDB, a Triangulation spyware implant” by Georgy Kucherin, Leonid Bezvershenko, and Igor Kuznetsov

https://securelist.com/triangledb-triangulation-implant/110050/
https://securelist.com/triangledb-triangulation-implant/110050/
https://securelist.com/triangledb-triangulation-implant/110050/
https://securelist.com/triangledb-triangulation-implant/110050/
https://securelist.com/triangledb-triangulation-implant/110050/

Two Scans

 RedPine scanner has the com.apple.system-task-ports.read entitlement

o Allows to obtain task read ports

* |t performs two scans when run as root

o Scans the main executable in memory

o Scans loaded libraries (called LoadedLibrary Scanner)

Scanning the Main Executable in Memory

* XPProcessMemoryAPI is used for in-memory scanning

o Only _ TEXT segment is scanned

o Excludes platform processes from scan targets

[/ Get type record of XPMemoryRegion

// BML_adst:

[/ 8x10083e1bB(XPPluginAPI.XPMemoryRegion.sub_168603e1b8)
[/ (vt:0x1000eeB20(cls__TtC11XPPluginAPI14XPMemoryRegion))
while (true)

inte4_t rax_46

inté4_t rdx_5

rax_46, rdx_5 = (*(*r15_7 + 6x168))()

// Scan starts it the segment 1is __TEXT

char rax_47 = String.hasPrefix(_:)('__TEXT', -8x1200000000000000, rax_46, rdx_5)
_swift_bridgeObjectRelease(rdx_5)

Why Does It Perform In-Memory Scanning?

* Perhaps macOS implant was also deployed only in memory

o Without leaving any payload on disk?

The implant, which we dubbed TriangleDB, is deployed after the attackers obtain

root privileges on the target iOS device by exploiting a kernel vulnerability. It is
deployed in memory, meaning that all traces of the implant are lost when the device

gets rebooted.

- “Dissecting TriangleDB, a Triangulation spyware implant’ by Georgy Kucherin, Leonid Bezvershenko, and Igor Kuznetsov

https://securelist.com/triangledb-triangulation-implant/1 10050/

Note: other XPR scanners perform YARA scan on

the backing file (not on process memory)

https://securelist.com/triangledb-triangulation-implant/110050/
https://securelist.com/triangledb-triangulation-implant/110050/
https://securelist.com/triangledb-triangulation-implant/110050/
https://securelist.com/triangledb-triangulation-implant/110050/
https://securelist.com/triangledb-triangulation-implant/110050/

LoadedLibrary Scanner

A scanner that examines loaded libraries

RedPineScanner A{
Process {
ProcessIsAppleSigned
HasLoadedLibrary{"/System/Library/PrivateFrameworks/FMCore. framework")

HasLoadedLibrary{"/System/Library/Frameworks/CoreLocation. framework/CoreLocation")
HasLoadedLibrary{"/System/Library/Frameworks/AVFoundation. framework/AVFoundation")
HasLoadedLibrary("/usr/lib/libsqlite3.dylib")

}.reportOnly()

Peculiar Logic

» Except for /usr/lib/libsglite3.dylib, no actual file paths are specified!
o CorelLocation and AVFoundation are symlinks

o FMCore.framework is a directory

file /System/Library/PrivateFrameworks/FMCore. framework
System/Library/PrivateFrameworks/FMCore.framework: directory
file /System/Library/Frameworks/CoreLocation.framework/CoreLocation

System/Library/Frameworks/CoreLocation. framework/CoreLocation: broken symbolic link to Versions/Current/CoreLocation
file /System/Library/Frameworks/AVFoundation.framework/AVFoundation

System/Library/Frameworks/AVFoundation. framework/AVFoundation: broken symbolic link to Versions/Current/AVFoundation

/
/
/

Mystery of the LoadedLibrary Scanner

* Hypothesis 1: XPR’s Bug
o Did Apple incorrectly specify the LoadedLibrary paths?

» Hypothesis 2: SIP & SSV bypass

o Did the attacker replace the directory and the symlinks with attacker’s dylibs?
o It is pretty unlikely because macOS becomes unstable...

Hypothesis 3: Stealthier Reflective Loader

* TriangleDB iOS implant uses reflective loading for its modules

o macOS implant maybe implemented it, too

 Patrick’s research showed reflectively loaded dylibs has empty backing files

o Serves as one of the key indicators of reflective loading

VIEWING MEMORY MAPPINGS?
...may (reactively) reveal memory-mapped payloads

— Can we specify a backing
.., yindsiien file to hide indicators of
reflective loader?

_in-memory payloads No baCklng ﬁlel
identified as ‘d\lib’ by vmmap

https://speakerdeck.com/patrickwardle/mirror-mirror-restoring-reflective-code-loading-on-macos?slide=40
https://speakerdeck.com/patrickwardle/mirror-mirror-restoring-reflective-code-loading-on-macos?slide=40
https://speakerdeck.com/patrickwardle/mirror-mirror-restoring-reflective-code-loading-on-macos?slide=40
https://speakerdeck.com/patrickwardle/mirror-mirror-restoring-reflective-code-loading-on-macos?slide=40
https://speakerdeck.com/patrickwardle/mirror-mirror-restoring-reflective-code-loading-on-macos?slide=40
https://speakerdeck.com/patrickwardle/mirror-mirror-restoring-reflective-code-loading-on-macos?slide=40
https://speakerdeck.com/patrickwardle/mirror-mirror-restoring-reflective-code-loading-on-macos?slide=40
https://speakerdeck.com/patrickwardle/mirror-mirror-restoring-reflective-code-loading-on-macos?slide=40
https://speakerdeck.com/patrickwardle/mirror-mirror-restoring-reflective-code-loading-on-macos?slide=40
https://speakerdeck.com/patrickwardle/mirror-mirror-restoring-reflective-code-loading-on-macos?slide=40
https://speakerdeck.com/patrickwardle/mirror-mirror-restoring-reflective-code-loading-on-macos?slide=40
https://speakerdeck.com/patrickwardle/mirror-mirror-restoring-reflective-code-loading-on-macos?slide=40
https://speakerdeck.com/patrickwardle/mirror-mirror-restoring-reflective-code-loading-on-macos?slide=40
https://speakerdeck.com/patrickwardle/mirror-mirror-restoring-reflective-code-loading-on-macos?slide=40
https://speakerdeck.com/patrickwardle/mirror-mirror-restoring-reflective-code-loading-on-macos?slide=40

Hypothesis 3: Stealthier Reflective Loader

* | developed a new reflective loader that can specify a backing file

* macOS implant might load dylibs reflectively while specifying backing files?

o To hide indicators of reflective loader

Output of vmmap

dylib 282de40006-302de4 000 - ——/rwx SM=NUL

__TEXT 302de4000-302de5000 r—-x/rwx SM=COW /System/Library/PrivateFrameworks/FMCore.framework
__DATA_CONST 302de5PP0-302deb000 r—/rwx SM=ZER /System/Library/PrivateFrameworks/FMCore.framework
__LINKEDIT 302de7000-302de8000 r—/rwx SM=ZER /System/Library/PrivateFrameworks/FMCore.framework
STACK GUARD 3856babeB-308ebebBp . ———/rwx SM=NUL stack guard for thread @

STACK GUARD 3896babeB-3096bboo0O ——/rwx SM=NUL stack gua Bpathread 2

Directory path is specified
as the backing file

Comment from Phil Stokes

() Phil Stokes @ - 2:42 AM

L Oh, and | wanted to say that though you make a really,
really convincing case of hypothesis 3 in Ch 4, | really,
really wouldn't rule out hypothesis 1 given the amount
of dumb errors I've seen in Apple code over the years.

==

=

[@’I] @

Remaining Mysteries

* [t's more natural to specify an unused system library path as a backing file

o Why specify a directory or symlink?

* Why doesn’t RedPine scanner remediate threat?

o If remediation wasn't the goal, what was the purpose of deploying it?

RedPineScanner {

Process {
ProcessIsAppleSigned()
HasLoadedLibrary("/System/Library/PrivateFrameworks/FMCore. framework")

HasLoadedLibrary("/System/Library/Frameworks/CoreLocation.framework/CoreLocation")
HasLoadedLibrary("/System/Library/Frameworks/AVFoundation.framework/AVFoundation")
HasLoadedLibrary("/usr/lib/libsglite3.dylib")

.reportOnly()
} © Docsnotremediae treat

XPRTestSuite

» Contains RE results of 15 XPR scanners

» Contains scripts to reproduce XPR remediation
» Useful for XPR research and testing purposes
* https://github.com/FFRI/XPRTestSuite

XProtect Remediator Test Suite

A collection of scripts and documents to help future XProtect Remediator (XPR) research.

About This Repository

This repository contains:

* The scripts to create harmless minimal files and processes that reproduce the remediation of each scanning
module of XPR

+ The documents that describe the reverse-engineered XPR remediation (or detection) logic using the
RemediationBuilder DSL

https://github.com/FFRI/XPRTestSuite
https://github.com/FFRI/XPRTestSuite

Outline

1. Introduction
2. Tooling
3. RE results

1. Overview

2. Initialization

3. RemediationBuilder

4. Remediation Logic

4. Conclusion

daemon.scan.startup.plist
daemon.scan.plist

DAS-CTS

Contents/MacOS/XProtect XProtectPluginService.xpc

agent.scan.startup.plist
agent.scan.plist DAS-CTS

GCD & NSTask

Swift Mach-O IS XPR scanners

Initialization
BlueTop WaterNet

Remediation/Detection BadGacha

Collect remediated
threat info

_______________________________________ [- [

l Remediates threats

Send remediated

threat info % -' -' I
— B

plist 3d stage payload 279 stage payload evil.app

These files have the same
provenance attribute

Conclusion

» Covered:
o Tooling and how to analyze XPR

o XPR internals (initialization, RemediationBuilder, remediation logic)

* Not covered (see the white paper):
o Provenance Sandbox & How XPR uses this mechanism
o XPAPIHelpers
o Other XPR scanners internals (such as CardboardCutout)

o Vulnerabilities of XPR scanners

Takeaways

 XPR gives insights into Apple-exclusive threat intelligence
o Security researchers should keep analyzing scanners in future updates

o My custom tools for XPR analysis is live on GitHub, so please use them

« Scanner’s detection result may help discover new threats

o Some scanners appears to be designed to hunt new threats
o Monitoring these scanner’s detection results may result in discovering new threats

Disclaimer

This document is a work of authorship performed by FFRI Security, Inc. (hereafter referred to
as "the Company"). As such, all copyrights of this document are owned by the Company and
are protected under Japanese copyright law and international treaties. Unauthorized
reproduction, adaptation, distribution, or public transmission of this document, in whole or in

part, without the prior permission of the Company is prohibited.

While the Company has taken great care to ensure the accuracy, completeness, and utility of
the information contained in this document, it does not guarantee these qualities. The

Company will not be liable for any damages arising from or related to this document.

©FFRI Security, Inc. Author: FFRI Security, Inc.

Thank You!

Feedback? ldeas?

@tsunekOh (X)
@tsunekoh@infosec.exchange (Mastodon)
research-feedback@ffri.jp

Ilcon

o https://www.flaticon.com

* https://macosicons.com/#/

https://www.flaticon.com/
https://www.flaticon.com/
https://macosicons.com/#/
https://macosicons.com/#/

	Intro
	Slide 1: XUnprotect: Reverse Engineering macOS XProtect Remediator
	Slide 2: NSUserFullName()
	Slide 3: White Paper Is Live
	Slide 4: About This Presentation
	Slide 5: Outline
	Slide 6: What Is XPR?
	Slide 7: What Is XPR?
	Slide 8: Why Is Remediation Needed?
	Slide 9: Research Motivation
	Slide 10: Research Targets

	Tooling
	Slide 11: Outline
	Slide 12: Static Analysis
	Slide 13: Challenges in RE of Stripped Swift Binaries
	Slide 14: Swift Metadata
	Slide 15: binja-swift-analyzer
	Slide 16: Type Metadata Identification
	Slide 17: Dynamic Analysis – LLDB Scripting Bridge
	Slide 18: Branch Tracing & Imported into Binja

	Overview
	Slide 19: Outline
	Slide 20: Flow of “Remediation”

	Initialization
	Slide 21: Outline
	Slide 22: mod_init_func_0
	Slide 23: Decrypting XPR Sensitive Strings
	Slide 24: Decryption Results

	RemediationBulider
	Slide 25: Outline
	Slide 26: How to Describe Remediation Logic
	Slide 27: Naive Implementation
	Slide 28: Issues When Implementing Remediation Logic
	Slide 29: What Are Result Builders?
	Slide 30: Power of Result Builders
	Slide 31: Power of Result Builders
	Slide 32: Power of Result Builders
	Slide 33: RemediationBuilder DSL
	Slide 34: Specification of RemediationBuilder DSL
	Slide 35: Example Eicar Scanner

	Remediation Logic
	Slide 36: Outline
	Slide 37: RoachFlight Scanner
	Slide 38: Remediation Logic
	Slide 39: What Are These Two CDHashes?
	Slide 40: What Are These Two CDHashes?
	Slide 41: BadGacha Scanner
	Slide 42: Decrypted Strings
	Slide 43: OCR-based Gatekeeper Bypass Detection
	Slide 44: Which Malware Family Does It Detect?
	Slide 45: RedPine Scanner
	Slide 46: Two Scans
	Slide 47: Scanning the Main Executable in Memory
	Slide 48: Why Does It Perform In-Memory Scanning?
	Slide 49: LoadedLibrary Scanner
	Slide 50: Peculiar Logic
	Slide 51: Mystery of the LoadedLibrary Scanner
	Slide 52: Hypothesis 3: Stealthier Reflective Loader
	Slide 53: Hypothesis 3: Stealthier Reflective Loader
	Slide 54: Comment from Phil Stokes
	Slide 55: Remaining Mysteries
	Slide 56: XPRTestSuite

	Conclusion & Takeaway
	Slide 57: Outline
	Slide 58: Conclusion
	Slide 59: Takeaways
	Slide 60: Disclaimer
	Slide 61: Thank You! Feedback? Ideas? @tsunek0h (X) @tsunekoh@infosec.exchange (Mastodon) research-feedback@ffri.jp

	Acknowledgement
	Slide 62: Icon

