
Why Is Process Isolation
Indispensable?: Stealing All macOS

Sensitive Info with a Single
Vulnerability

Koh M. Nakagawa (@tsunek0h)

FFRI Security, Inc.

stat -f "%Su" /dev/console

• Koh M. Nakagawa (@tsunek0h)

• Security researcher at FFRI Security, Inc.

• 25+ CVEs from various vendors (Apple, Zoom, MSFT, …)

• Mainly focusing on Apple product security

• Gave talks at BHASIA, BHEU, CODE BLUE

Exploit Code of Today’s Talk

Dump login keychain Bypass TCC privacy protection Decrypt iOS

apps on macOS

Outline

• macOS security 101

• Exploitation

• Discovering similar bugs

• Detection

• Conclusion & Takeaways

History of macOS

• Mach + FreeBSD -> NeXTSTEP -> OS X -> macOS

omacOS is UNIX-based OS

oHowever, its security model differs from that of traditional UNIX

 o

 o 5

 2

 5

 2

 5

2

2

2 o 2 2

2 5 o 2

2 o 2

2

 2

 2 o 2

 2 o 2 2

 o

 o 5

 2

 5

 2

 5

2

2

2 o 2 2

2 5 o 2

2 o 2

2

 2

 2 o 2

 2 o 2 2

 o

 o 5

 2

 5

 2

 5

2

2

2 o 2 2

2 5 o 2

2 o 2

2

 2

 2 o 2

 2 o 2 2

 o

 o 5

 2

 5

 2

 5

2

2

2 o 2 2

2 5 o 2

2 o 2

2

 2

 2 o 2

 2 o 2 2

https://en.wikipedia.org/wiki/History_of_Unix

https://en.wikipedia.org/wiki/History_of_Unix

System Integrity Protection (SIP)

• Also known as rootless

• Introduced from OS X El Captain

• Res ric s cer ain dangerous opera ions such as…

oModifying system files (e.g., files of the /bin directory)

oLoading untrusted kernel extensions

oControlling other processes (including read/write other process memory contents)

o…

• Even the root user cannot perform these dangerous operations

o3rd par y AV produc s canno read o her processes’ memory con en s (even wi h

root privileges)

SIP Is Configured by NVRAM Variable

• NVRAM variable csr-active-config describes enabled protections

csr-active-config NVRAM bit Description

CSR_ALLOW_UNTRUSTED_KEXTS Controls the loading of untrusted kernel

extensions

CSR_ALLOW_UNRESTRICTED_FS Controls write access to restricted

filesystem locations

CSR_ALLOW_TASK_FOR_PID Controls whether to allow getting a task port

for Apple processes (that is, invoke the
task_for_pid API)

CSR_ALLOW_UNRESTRICTED_NVRAM Controls unrestricted NVRAM access

CSR_ALLOW_KERNEL_DEBUGGER Controls whether to allow kernel debugging

https://www.microsoft.com/en-us/security/blog/2021/10/28/microsoft-finds-new-macos-

vulnerability-shrootless-that-could-bypass-system-integrity-protection/

https://www.microsoft.com/en-us/security/blog/2021/10/28/microsoft-finds-new-macos-vulnerability-shrootless-that-could-bypass-system-integrity-protection/
https://www.microsoft.com/en-us/security/blog/2021/10/28/microsoft-finds-new-macos-vulnerability-shrootless-that-could-bypass-system-integrity-protection/

Example of Process Isolation

Attaching to securityd failed

Console log of kernel (AppleMobileFileIntegrity)

Failed to get the task control port of securityd

Running LLDB with root privileges

Importance of Process Isolation

• Why is process isolation important on macOS?

oBreaking this isolation can lead to TCC bypasses, SIP bypasses, and root LPE

▪ For example, if an attacker can execute code in the context of other apps, they can gain its

entitlements and granted permissions

▪ If hijacked apps have TCC-bypass entitlements, they can bypass TCC

oDemonstrated in various previous studies:

▪ “Broken isola ion – draining your creden ials from popular macOS password managers”

▪ “2 + Ways o Bypass Your macOS Privacy Mechanisms”

▪ “Process Injec ion: Breaking All macOS Securi y Layers Wi h a Single Vulnerabili y”

▪ “Exploi ing XPC in An ivirus Sof ware”

▪ …

https://objectivebythesea.org/v7/talks/OBTS_v7_wRegula.pdf
https://i.blackhat.com/USA21/Wednesday-Handouts/US-21-Regula-20-Plus-Ways-to-Bypass-Your-macOS-Privacy-Mechanisms.pdf
https://i.blackhat.com/USA-22/Thursday/US-22-Alkemade-Process-Injection-Breaking-All-macOS-Security-Layers-With-a-Single-Vulnerability.pdf?_gl=1*bpmyqp*_gcl_au*MTY2MjQzNzcxNy4xNzQxODc1OTgy*_ga*NDEzMTI3NzEuMTc0MTg3NTk4Mg..*_ga_K4JK67TFYV*MTc0MjIxODIwNi4xMi4wLjE3NDIyMTgyMDYuNjAuMC4w&_ga=2.9599922.627992940.1742218207-41312771.1741875982
https://theevilbit.github.io/talks_workshops/2021/NullCon2021-Regula-Fitzl-Exploiting-XPC-in-AntiVirus.pdf

What If Process Isolation Is Broken?

• Example: Stealing user credentials from password managers

o “Broken isolation – draining your creden ials from popular macOS password managers”

oCode injection thru DYLIB injection

oRoot cause includes:

▪ Lack of hardened runtime (not mandatory for App Store reviewed apps)

▪ Presence of com.apple.security.cs.disable-library-validation entitlement

o Four popular password managers were found to be vulnerable to this injection attack

https://objectivebythesea.org/v7/talks/OBTS_v7_wRegula.pdf

What If Process Isolation Is Broken?

Hardened runtime is missing!

-> A dynamic library can be injected
thru DYLD_INSERT_LIBRARIES

Injecting keylogger DYLIB into

the password manager and

stealing master password

Restrictions of Debugging Other Processes

• Debugging other processes requires retrieval of task port via task_for_pid

oRetrieval of task port is restricted

oHowever, debugging other process is necessary in app development

• Even SIP-enabled, ge ing ask por of o her processes is allowed when …

oThe debugee has special entitlement named com.apple.security.get-task-allow

▪ Can be debugged by same-user process

oThe debugee does not have hardened runtime and is not a platform binary

▪ Can be debugged with root privileges

oThe debugger has private com.apple.system-task-ports entitlements

▪ Of course, no debuggers (even LLDB) have this entitlement
Gaining this entitlement is of

course extremely powerful

Gaining com.apple.system-task-ports Entitlements

• Leads to obtaining arbitrary entitlements -> kernel code execution

o “ModJack: Hijacking he macOS Kernel” by Zhi Zhou (@CodeColoris)

Insecure dlopen

leads to DYLIB hijack

Binaries with com.apple.system-

task-ports were targeted

https://conference.hitb.org/hitbsecconf2019ams/materials/D2T2%20-%20ModJack%20-%20Hijacking%20the%20MacOS%20Kernel%20-%20Zhi%20Zhou.pdf

Separating Task Ports into Various Flavors

• com.apple.system-task-ports are now separated in various flavors

• Minimum entitlements are granted to system binaries

oFor example, /usr/bin/symbols previously had com.apple.system-task-ports

▪ Now it only has com.apple.system-task-ports.read

o If an attacker can execute code in the context of symbols, they only obtains

com.apple.system-task-ports.read entitlement

▪ So, obtaining arbitrary entitlement is not possible

Entitlement (com.apple.system-task-ports. …) Allowed function

control task_for_pid

read task_read_for_pid

inspect task_inspect_for_pid

name task_name_for_pid

Gaining system-task-ports.read is also

extremely powerful (as you will see later)

Outline

• macOS security 101

• Exploitation

• Discovering similar bugs

• Detection

• Conclusion & Takeaways

What Is gcore?

gcore’s Entitlements (on macOS 15.0)

!?

What Does This Mean?

• gcore can read memory of any process and save it as a core file image

oEven with SIP enabled!

• How could it be exploited?

oDump keychain con en wi hou user’s plain password

oDump sensitive information protected by TCC

oDecrypt FairPlay-encrypted iOS app on macOS

Outline

• macOS security 101

• Exploitation

oDumping Keychain

oBypassing TCC

oDecrypting FairPlay-encrypted iOS apps

• Discovering similar bugs

• Detection

• Conclusion & Takeaways

What Is Keychain?

• Central place storing sensitive information securely

oLike certificates, website passwords, and secure notes

• Two types of keychain: file-based and data protection

oData protection keychain is out of scope for this research

File-based Keychain

• MacOS X Keychain file format

oDocumented in https://github.com/libyal/dtformats

• Login keychain and system keychain are created by default

oLogin: ~/Library/Keychains/login.keychain-db

oSystem: /System/Library/Keychains and /Library/Keychains

• Login keychain is encryp ed wi h user’s login password

oContains web service login credentials, certificates, and app encryption keys

oBrowser cookie’s encryp ion key is also con ained in his s orage

▪ For example, Google Chrome s ores his key as “Chrome Safe S orage”

https://github.com/libyal/dtformats

File-based Keychain Decryption

DB Key

Apple DB Header

Apple DB Schema

Metadata Table

DbBlobMaster Key

Login Password

Record Key #1
Key Table

KeyBlob #1

Credential Table

DataBlob #1

3DES

PBKDF2

3DES

Password #1

3DES

…
…

File-based Keychain Decryption

DB Key

Apple DB Header

Apple DB Schema

Metadata Table

DbBlobMaster Key

Login Password

Record Key #1
Key Table

KeyBlob #1

Credential Table

DataBlob #1

3DES

PBKDF2

3DES

Password #1

3DES

…
…

TL;DR Master Key or user login

password is required to decrypt all

How ITW Attackers Decrypt Keychain?

• Steal login password through social engineering

• Decrypt contents of login keychain with stolen login password

• This approach requires suspicious password prompt

https://unit42.paloaltonetworks.com/macos-stealers-growing/

Bypassing Gatekeeper
Stealing user login password

https://unit42.paloaltonetworks.com/macos-stealers-growing/

Other Possible Approaches?

• Keylogging? -> Difficult to steal login passwords thru keyloggers

o Installing a keylogger requires root privileges and TCC permissions

oText input fields created with NSSecureTextField is not logged

oKeylogger thru kernel code? -> Installing 3rd party KEXTs is not allowed

Is Obtaining the Master Key Possible?

• Master Key was present in securi yd’s process memory

oAt least, at the time of OS X Lion and Mountain Lion

• No SIP in OS X at that time

oAn attacker with root privileges could obtain securi yd’s task port

oBy reading process memory, they can obtain the Master Key and decrypt login

keychain

Scanning securityd’s whole memory space did not reveal any

copies of my login password. … Scanning the memory again,

a perfect copy of the master key was found in securityd’s

heap.

- “Breaking in o he OS X keychain” by Juuso Salonen (2 2)

Breaking into the OS X Keychain in 2025

• Master Key still exists in securityd on macOS Sequoia

oMaster Key can be obtained by analyzing securityd core image

• But how do you search for Master Key in the core file image?

oThe core file image spans several GiB…

Heuristic Search Algorithm

MALLOC_SMALL

__TEXT

__DATA_CONST

shared memory

MALLOC_SMALL

MALLOC_TINY

STACK GUARD

MALLOC_SMALL

MALLOC_SMALL

…

0x18 64-bit pointer

24-byte Master Key candidate

MALLOC_SMALL

MALLOC_SMALL

MALLOC_SMALL

MALLOC_SMALL

securityd process memory

1. List only MALLOC_SMALL regions

(based on vmmap output)

2. Search for 0x18
3. Get the subsequent

64-bit pointer

4. Check the pointer is in

MALLOC_SMALL region

5. Check if Master Key

candidate can decrypt

the login keychain

Outline

• macOS security 101

• Exploitation

oDumping Keychain

oBypassing TCC

oDecrypting FairPlay-encrypted iOS apps

• Discovering similar bugs

• Detection

• Conclusion & Takeaways

What Is TCC?

• Transparency, Consent and Control (TCC)

oPrivacy mechanisms to protect sensitive info

oRequires explicit user consent (or intent) to access sensitive info

oThese restrictions are applied even to root

Sensitive Info Protected by TCC

Dumping Sensitive Info

• Process memory is full of sensitive information!

o ~/Library/Application Support/AddressBook/AddressBook-v22.abcddb

▪ Contacts.app read this file into memory (contents can be dumped via gcore)

oPDF files -> these are mapped into memory when opened in Preview.app

▪ PDF files are typically in Desktop or Documents folders, which is TCC-protected

• TCC can be bypassed by …

oRunning apps that load sensitive info into process memory

oDumping with gcore

oExamining memory map of the target process with vmmap

oDumping data at specified addresses from the core file image

How to Search for Sensitive Info from Core Image?

• Use vmmap to identify which files are mapped to which addresses

oParse core image and extract contents at specified addresses

oMemory dumps are Mach-O format, so various parsers are available

Handling gcore Execution Failures

• gcore fails to generate core image for certain processes

• Bu his can be circumven ed by specifying hidden “-d” op ion

oWhen “-d” is specified, preserve op ion is enabled

o When memory read fails, generates memory dump with contents read up to that point

https://github.com/apple-oss-

distributions/system_cmds/blob/56f28fa802f4c21f687637fac27793932eedfbb3/gcore/options.h#L34

https://github.com/apple-oss-distributions/system_cmds/blob/56f28fa802f4c21f687637fac27793932eedfbb3/gcore/options.h#L34
https://github.com/apple-oss-distributions/system_cmds/blob/56f28fa802f4c21f687637fac27793932eedfbb3/gcore/options.h#L34

Outline

• macOS security 101

• Exploitation

oDumping Keychain

oBypassing TCC

oDecrypting FairPlay-encrypted iOS apps

• Discovering similar bugs

• Detection

• Conclusion & Takeaways

Issues in iOS Application Analysis

• iOS apps are encrypted with FairPlay

oTo perform static or dynamic analysis, decrypting iOS apps is required

oFairPlay encryption is not documented nor reverse-engineered yet

• Typical steps to decrypt iOS apps

oGrab Jailbroken iPhone

oLaunch a target iOS app in Jailbroken iPhone

oRead the memory of decrypted iOS app and dump it

▪ Available open-source tools are frida-ios-dump, bfdecrypt, …

• Other ways to decrypt iOS apps (but need to be specific iOS version)

oExploit vulnerabilities that allows to read other process memory (yacd, no JB)

oUse mremap_encrypted API (flexdecrypt)

https://github.com/AloneMonkey/frida-ios-dump
https://github.com/BishopFox/bfdecrypt
https://github.com/DerekSelander/yacd
https://github.com/JohnCoates/flexdecrypt

Jailbreak Is Getting Harder Though…

Most modern jailbreak tools only support

iOS devices released up until 2017.

These supported devices are expected

to stop receiving updates from Apple in

the coming years

- “Tapping .IPAs: An automated analysis of iPhone applications using

apple silicon macs” by S. Seiden, et al.

The development of JB tools is

decreasing over time

Running iOS Apps Natively on macOS

https://developer.apple.com/videos/play/wwdc2020/10114/

https://developer.apple.com/videos/play/wwdc2020/10114/

Issues in Analysis of iOS Apps on macOS

• iOS apps are prohibited from running when SIP is off

• With SIP on, attatching iOS apps with debugger is prohibited

oOf course, task_read_for_pid is also prohibited

Issues in Analysis of iOS Apps on macOS

• iOS apps are prohibited from running when SIP is off

• With SIP on, attatching iOS apps with debugger is prohibited

oOf course, task_read_for_pid is also prohibited

Bu … we have now power of reading any process

memory on SIP-enabled environment

FairPlay Decryption

Steps to decrypt FairPlay-encrypted iOS apps

1. Run the target iOS app

2. Identify PID and dump process memory using gcore

3. Extract FairPlay-encrypted regions

4. Modify the original executable

oSet cryptid to 0 in LC_ENCRYPTION_INFO_64

oReplace encrypted section with extracted content

Benefits of Analyzing iOS Apps on macOS

• No jailbroken iPhone is required

oUseful for decrypting apps that only support newer iOS versions

oCan execute iOS apps on the iOS-18-equivalent environment (on macOS Sequoia)

• Various tools are available for examining iOS apps behavior

omacOS offers access to frameworks unavailable on iOS

▪ Such as Endpoint Security Framework (ESF), DTrace, etc.

oRunning iOS apps on macOS enables analysis using ESF and DTrace

Notes about mremap_encrypted on Big Sur 11.2.3

• FairPlay decryption was possible using mremap_encrypted (prior to

macOS 11.2.3)

oMap FairPlay-encrypted executable to memory

oExecute mremap_encrypted function on encrypted pages

oWrite decrypted executable back to disk

• Limitations of this method

oThe iOS runtime environment provided by macOS 11.2.3 is outdated (iOS 14.4),

making many iOS apps incompatible

Outline

• macOS security 101

• Exploitation

• Discovering similar bugs

• Detection

• Conclusion & Takeaway

Fix for CVE-2025-24204 (on macOS 15.3)

com.apple.system-task-ports.read

entitlement is removed

https://support.apple.com/en-us/122373

https://support.apple.com/en-us/122373

How Can We Find Similar Bugs?

• Awesome tool ipsw by @blacktop__ makes it possible

• ipsw diff command shows the differences of entitlements of binaries

Show the entitlements change

from Sequoia to Sonoma

We can find com.apple.system-

task-ports.read entitlement is

added to /usr/bin/gcore

Outline

• macOS security 101

• Exploitation

• Discovering similar bugs

• Detection

• Conclusion & Takeaway

How to Detect Exploitation Attempt

• ESF provides get_task_read event

• Exploi a ion a emp can be de ec ed by…

oMonitoring get_task_read event

oCheck if the get_task_read target is process containing sensitive info

oCheck if the caller of task_read_for_pid is gcore with com.apple.system-task-

ports.read entitlement

Outline

• macOS security 101

• Exploitation

• Discovering similar bugs

• Detection

• Conclusion & Takeaways

Conclusion

• CVE-2025-24204 allows to read any process memory on the SIP-

enabled environment

• The root cause of this vuln is an elementary mistake of adding

excessively powerful entitlement to gcore

• Exploi ing his vuln leads o …

oDumping login keychain without user login password

oBypassing TCC and accessing sensitive info

oDecrypting FairPlay-encrypted iOS and analyze iOS app on macOS

Takeaways

• Process isolation is crucial in the macOS security model

oBeing broken in the system level leads serious security issues

oEven retrieval of com.apple.system-task-ports.read breaks various security &

privacy mechanisms

• It is essential to keep a close eye on entitlement changes

oVulnerabilities can be discovered through monitoring these changes

o ipsw diff is a useful tool for checking these changes

• ESF can detect possible exploitation attempt of accessing sensitive info

thru process memory dumping

oMonitoring get_task_read event helps to detect such attack

Appendix

Other Way to Steal User Login Password

• Automatic Login -> Can be exploited if the user has enabled it

oWhen Automatic Login is enabled, the user login password is stored in

obfuscated format in /etc/kcpassword

oDecryption is easy as it is only encrypted using XOR with a fixed key!

▪ “In he Hun for he macOS Au oLogin Se up Process” by Csaba Fitzl (@theevilbit)

https://www.offsec.com/blog/in-the-hunt-for-the-macos-autologin-setup-process/

Can “ulimit -c unlimited” Be Abused to Bypass TCC?

• Possible exploi a ion s eps are …

oRun ulimit -c unlimited

oRun a target app containing sensitive info

oKill the target process and generate core image file

oGrab the sensitive info from the core image file

• But this is not possible

oCore image file is automatically generated for apps with com.apple.security.get-

task-allow entitlement

o If the debug entitlement is not present, core image file is not generated 

oSee https://developer.apple.com/forums/thread/694233

https://developer.apple.com/forums/thread/694233

	スライド 1: Why Is Process Isolation Indispensable?: Stealing All macOS Sensitive Info with a Single Vulnerability
	スライド 2: stat -f "%Su" /dev/console
	スライド 3: Exploit Code of Today’s Talk
	スライド 4: Outline
	スライド 5: History of macOS
	スライド 6: System Integrity Protection (SIP)
	スライド 7: SIP Is Configured by NVRAM Variable
	スライド 8: Example of Process Isolation
	スライド 9: Importance of Process Isolation
	スライド 10: What If Process Isolation Is Broken?
	スライド 11: What If Process Isolation Is Broken?
	スライド 12: Restrictions of Debugging Other Processes
	スライド 13: Gaining com.apple.system-task-ports Entitlements
	スライド 14: Separating Task Ports into Various Flavors
	スライド 15: Outline
	スライド 16: What Is gcore?
	スライド 17: gcore’s Entitlements (on macOS 15.0)
	スライド 18: What Does This Mean?
	スライド 19: Outline
	スライド 20: What Is Keychain?
	スライド 21: File-based Keychain
	スライド 22: File-based Keychain Decryption
	スライド 23: File-based Keychain Decryption
	スライド 24: How ITW Attackers Decrypt Keychain?
	スライド 25: Other Possible Approaches?
	スライド 26: Is Obtaining the Master Key Possible?
	スライド 27: Breaking into the OS X Keychain in 2025
	スライド 28: Heuristic Search Algorithm
	スライド 29
	スライド 30: Outline
	スライド 31: What Is TCC?
	スライド 32: Sensitive Info Protected by TCC
	スライド 33: Dumping Sensitive Info
	スライド 34: How to Search for Sensitive Info from Core Image?
	スライド 35: Handling gcore Execution Failures
	スライド 36
	スライド 37: Outline
	スライド 38: Issues in iOS Application Analysis
	スライド 39: Jailbreak Is Getting Harder Though…
	スライド 40: Running iOS Apps Natively on macOS
	スライド 41: Issues in Analysis of iOS Apps on macOS
	スライド 42: Issues in Analysis of iOS Apps on macOS
	スライド 43: FairPlay Decryption
	スライド 44
	スライド 45: Benefits of Analyzing iOS Apps on macOS
	スライド 46: Notes about mremap_encrypted on Big Sur 11.2.3
	スライド 47: Outline
	スライド 48: Fix for CVE-2025-24204 (on macOS 15.3)
	スライド 49: How Can We Find Similar Bugs?
	スライド 50: Outline
	スライド 51: How to Detect Exploitation Attempt
	スライド 52
	スライド 53: Outline
	スライド 54: Conclusion
	スライド 55: Takeaways
	スライド 56: Appendix
	スライド 57: Other Way to Steal User Login Password
	スライド 58: Can “ulimit -c unlimited” Be Abused to Bypass TCC?

